
 ZCPR 3.3 User's Guide

 Written by
 Jay P. Sage

 Echelon, Inc.
 885 N. San Antonio Road
 Los Altos, CA 94022 USA
 415/948-3820

ZCPR 3.3 User's Guide is Copyright 1987 Jay P. Sage. All rights reserved
worldwide. No part of this guide may be reproduced in any manner or by any
means without prior written premission from the publisher. For more
information, contact Echelon, Inc., 885 N. San Antonio Road, Los Altos, CA
94022.

ZCPR 3.3, the program, is Copyright 1987 Echelon, Inc. All rights reserved
worldwide. ZCPR 3.3 is protected by international copyright law and inter-
national treaty provisions. End-user distribution and duplication permitted
for non-commercial purposes only. Any commercial use of ZCPR 3.3, defined as
any situation where the duplicator or distributor receives revenue by dupli-
cating or distributing ZCPR 3.3 by itself or in conjunction with any hardware
or software product, is expressly prohibited unless authorized in writing by
Echelon, Inc.

ECHELON SPECIFICALLY DISCLAIMS ANY WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS OR PARTICULAR PURPOSE. IN NO EVENT WILL ECHELON BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

The above statements shall be construed, interpreted, and governed by the laws
of the State of California.

Printed in the United States of America
First Printing: May 1987
Second Edition, First Printing: June 1987

 9 8 7 6 5 4 3

The following trademarks are mentioned in this publication:

 ZCPR3, ZRDOS, Z-System, Z-Com, Z3-Dot-Com, ZDM, ZAS: Echelon, Inc.
 DSD: Soft Advances
 CP/M, ASM, MAC: Digital Research
 Turbo Pascal: Borland International
 M80: Microsoft
 Z80ASM, SLR180: SLR Systems

 Publisher's Foreword
 15 May 1987

ZCPR 3.3 continues the traditions of convenience, quality, and
achievement which are the hallmark of ZCPR. As with other ZCPR's,
ZCPR 3.3 gives the user unparalleled power and capabilities, with
the subsequent benefit of personal growth while learning to take
complete advantage of the system. As a consequence of this growth
and learning the user is changed by this software and its concepts,
unlike most commercial software which seeks to appeal to the lowest
common denominator amongst users.

We believe ZCPR 3.3 to be the most powerful software for controlling
your computer system available for any machine or from any source.
Yet, ZCPR continues to be enhanced, new concepts added, additional
power put into the user's hands. Expect this process of growth to
continue, as life does.

This publication is written as a supplement to Richard Conn's book
ZCPR3: The Manual. The newcomer to ZCPR3 will find both publications
necessary to a complete understanding of the system; previous
users of ZCPR3 should find this document an adequate guide.

Good luck in your journeys with ZCPR3.

 T A B L E O F C O N T E N T S

1. INTRODUCTION ...1
 1.1. ZCPR33 Design Goals ..1
 1.1.1. Compatibility ...1
 1.1.2. Flexibility ...2
 1.1.3. Reliability ...3
 1.1.4. Information Hooks..3
 1.2. Summary of Benefits ..4
 1.2.1. Benefits over CP/M ..4
 1.2.2. Benefits of Z33 over Z305
 1.3. The History of ZCPR ..7
 1.3.1. ZCPR1 ...7
 1.3.2. ZCPR2..7
 1.3.3. ZCPR3 ...8
 1.3.4. ZCPR31 ... 9
 1.3.5. ZCPR33 ...11
 1.4. Definitions ...11

2. ZCPR33 COMMAND PROCESSING FUNCTIONS13
 2.1. Automatic Installation of Transient Programs13
 2.2. Simultaneous Use of Error Handlers and ECPs14
 2.2.1. LX Extended Command Processor15
 2.2.2. ARUNZ Extended Command Processor16
 2.2.3. Extended Command Processor Recommendations17
 2.3. Enhanced Error Handling Under ZCPR3317
 2.4. The Type-3 Environment ..19
 2.5. Enhanced Command Search Control20
 2.5.1. Search of Current Directory (SCANCUR)21
 2.5.1.1. Precautions if using SCANCUR False21
 2.5.1.2. Root of Path and Minimum Path22
 2.5.1.3. Forcing a Search of the Current Directory23
 2.5.2. Directory Prefixes ...23
 2.5.3. Direct invocation of Extended Command Processor23
 2.5.4. Summary of Path Search Rules24
 2.6. Command Acquisition Hierarchy......................................24
 2.6.1. Z30 Command Acquisition Hierarchy25
 2.6.2. Z33 Command Acquisition Hierarchy25
 2.6.3. Improvements to SUBMIT Processing26
 2.7. Command Resolution Hierarchy27
 2.7.1. System Command Resources27
 2.7.2. Flow State and Shell Stack-Generated Commands28
 2.8. Directory References and System Security29
 2.8.1. Named Directory Passwords30
 2.8.2. Z33 Security Improvements Philosophy31
 2.8.3. DU References to Directories with Names31
 2.8.4. Unconditional Acceptance of Current Directory32
 2.8.5. No Password Checking Under False If Conditions33
 2.8.6. Special Options for Directory References34
 2.8.7. Passing Illegal Directory References to an ECP34
 2.9. Command Processor Response to the Environment Descriptor...........35
 2.9.1. Equates Controlling Command Processor ENV Access35
 2.9.2. Dynamic Sizing of FCP/RCP/NDR36

 i

3. COMMAND-PROCESSOR-RESIDENT COMMANDS37
 3.1. Overview ...37
 3.2. DIR ..38
 3.3. ERA ..38
 3.4. GET ..38
 3.4.1 GET and Memory Protection39
 3.5. GO ...39
 3.6. JUMP ...40
 3.6.1. A Possible Rare Problem with JUMP, SAVE, and the ECP40
 3.7. REN ..41
 3.8. SAVE ...41
 3.9. TYPE/LIST ..42

4. INSTALLATION ..43
 4.1. Types of Existing Installations43
 4.2. Installation Methodology ...43
 4.3. Collecting the Files ...43
 4.4. Choosing the Options ...44
 4.5. Assembling the Command Processor44
 4.5.1. Assembling Z33 with ZAS45
 4.5.2. Assembling Z33 with Other Assemblers.......................46
 4.6. Installing the Command Processor into the System..................46
 4.6.1. Installation in Z-Com and Z3-Dot-Com Systems47
 4.6.2. Installation into a Manual Install System47
 4.6.2.1. Installation Using Disk Utility (DU3)48
 4.6.2.2. Installation Using a SYSGEN Image50
 4.6.2.3. The Simpler SYSGEN Technique50
 4.6.2.4. The More Complicated SYSGEN Technique51

Appendices

 Bibliography ...53
 INDEX ..55

 ii

 1. INTRODUCTION

This user guide describes version 3.3 of the ZCPR command processor, an
upgrade from Richard Conn's original release of ZCPR3, version 3.0. Since we
refer to these two versions so often in this document, we use an abbreviated
notation. Z30 is used for ZCPR version 3.0, Z33 is used for ZCPR version 3.3,
and ZCPR3 is used to refer to both versions generically.

The guide is divided into four main sections: Introduction, Command Processing
Functions, Resident Commands, and Installation. In the introduction we first
describe the design goals that guided the development of Z33. Then we give a
brief summary of the features and benefits offered by Z33. Finally, we try to
put Z33 in perspective by presenting a short account of the history of ZCPR
from its inception in 1981. This historical account includes acknowledgments
to a number of individuals who made particularly significant contributions to
the development of version 3.3.

The command processor in CP/M has traditionally performed two distinct
functions. One of them, as the name implies, is command processing --
accepting, interpreting, and loading user commands. The other has been the
secondary role of providing the actual code for a number of basic command
functions. In section 2 we describe the command processing services provided
by Z33, and in section 3 we cover the resident commands that can optionally be
included in the processor.

In the last section of the user guide, we describe the procedure for instal-
ling Z33, either in a conventional manually installed system or in one of
Echelon's ingenious auto-install implementations, Z-Com or Z3-Dot-Com.

1.1. ZCPR33 Design Goals

In developing Z33, we have tried to achieve three qualities: compatibility,
flexibility, and reliability. To allow programmers to make maximum use of
system capabilities, we have also tried to provide as many information hooks
as possible.

1.1.1. Compatibility

To the greatest extent reasonable, Z33 is compatible with Z30. No change is
required to any part of the operating system other than the command processor
itself. The memory allocation and system modules that you used with Z30 work
with Z33. Thus, installing Z33 requires only that the new code be assembled
and installed in place of the old command processor code.

The feel of Z33 to the user is basically the same, and almost all programs
that ran under Z30 run identically under Z33. In a small number of cases
programs run slightly differently under unusual conditions, such as when run
from a ZEX script. In most of these cases, the program now runs correctly
when before it did not. For example, when an error handler is invoked because
of a command error that occurs in a ZEX script, input redirection is turned
off automatically. Thus the user can decide how the error should be dealt

 -1-

ZCPR 3.3 User's Guide

with. Under Z30, quite bizarre behavior would result under these circum-
stances, because many of the error handlers were not designed with ZEX in
mind.

Two known changes have been made that cause Z30 versions of some programs no
longer to work. One such change is in the way submit processing is carried
out. Under Z30, the $$$.SUB file was kept on drive A in the user number that
was current when the batch job was started. As a result, submit jobs could
not change user areas during operation. In Z33 submit processing references
user area 0 at all times. Consequently, the old submit utility, SUB.COM, does
not work with Z33 except in user area 0. However, a new Z33 version,
SUB33.COM, is already available.

The second change is in the way one of the flags in the message buffer is
used. The error-handler flag at offset 0 in the message buffer formerly
indicated whether or not an error handling command line had been installed by
the user. This flag was redundant, since the information it provided could
just as readily be determined from the error command line itself. The error-
handler flag has been given a new, more important purpose in Z33, namely, to
indicate the precise type of error that occurred. Because of this change,
some programs, such as SHOW.COM, may not indicate properly whether or not an
error handler is loaded. Corrected versions of affected programs will be
available at the time Z33 is released or shortly thereafter.

1.1.2. Flexibility

The second design goal was to achieve simultaneously high degrees of
flexibility, user control, and ease of use. Many features of ZCPR3 -- such as
automatic searching for program files, extended command processing, and error
handling -- are extremely convenient, but they come at the expense of speed.
In Z33 we have maintained all the convenience features of Z30 (and even added
some more), but we have given the user ways to impose greater control over the
behavior of the system when he wishes to exercise it.

For example, when a command is prefixed with a space or a '/', extended
command processing is invoked immediately, completely bypassing the usual
search for a COM file. On the other hand, prefixing a command with an
explicit directory reference forces the command processor to look only for a
COM file (resident commands are bypassed) of that name and to look for it only
in the specified directory; both the command search and extended command
processing are disabled.

One of the hallmarks of ZCPR3 has been its ease of use. Unfortunately, this
only applied to open (non-secure) versions. As soon as Z30 was configured in
a secure mode, such as when it was used for remote access systems, much of
this ease of use went out the window. The ability to refer to a directory
area by name was a convenient option available to the user in an open system,
but in a secure system it often became a burdensome requirement. A secure Z33
system need be no less convenient and easy to use than an open system. In
fact, we use the same version of Z33 on our personal systems as we do on our
remote access Z-Node systems. One way this is achieved is through the option
to skip password checking on named directories when the wheel byte is set.
Automatic conversion of DU (drive/user) references to equivalent named-
directory references gives the user the freedom to employ whichever form is
most convenient.

 -2-

ZCPR 3.3 User's Guide

1.1.3. Reliability

The third design goal has been reliability, in two senses. First of all, we
have tried to make the code rigorous, so that improper commands cannot impair
the system. In Z30, for example, when the command tail was copied from the
command line buffer to the command tail buffer at 80H, no checking was
performed to prevent a tail longer than 128 bytes from overwriting the program
loaded at 100H (the program is loaded before the tail is copied). This
deficiency in Z30 could result in a fatal system crash or worse.

Many other reliability problems have been corrected. Here are three more
examples. First, care has been taken to ensure that the DMA buffer is always
set to the default location of 80H when disk directories are being scanned.
With the GET command in Z30, for example, the load checking code would
complain about an attempt to load a file over the operating system. Although
loading of the file would then be aborted, memory had already been clobbered
when the directory sector was read. Second, when programs are loaded into
memory under Z33, overwrite protection is provided not only for the command
processor but also for any resident system extension code (such as ZEX) that
has been installed below the command processor. Third, command lines read in
from submit files cannot write beyond the end of the command line buffer and
damage other system modules in memory.

We have also tried to make Z33 more reliable from the point of view of provid-
ing far greater opportunity for recovery from user errors. Mistakes in the
use of command-processor-resident commands now invoke the error handling
facility, and a mechanism has been provided that allows non-CPR commands
(either COM programs or RCP/FCP-resident commands) to engage error handling as
well. As the multiple command line facilities of ZCPR3 are used more and more
by automatic command line generators (aliases, shells, ZEX, and SUBMIT), it
becomes more and more important to allow the user to intervene when a problem
arises that prevents the proper operation of one command in a long sequence of
commands. In addition to trapping far more errors, Z33 also provides much
more information about the nature of the error and what may have caused it.

1.1.4. Information Hooks

We have tried to make available to programs as much information about the
system as possible. This has been accomplished in several ways. First,
additional information has been included in standard channels. Here are two
examples.

The external file control block now contains not only the name of the command
that was requested. It also includes the drive and user number where the
command was actually located by the command processor during its search. The
drive always has an explicit value in the range 1 to 16 if the program was a
transient. A value of zero indicates that the command was a resident command.

When the file control blocks are parsed by the CPR parser, information is
included that allows a program to determine 1) whether the directory
specification was valid and 2) whether the directory specification was
explicit (as opposed to the default). If an explicit directory (valid or
invalid) was included, the drive byte in the FCB is filled in with a value in
the range 1 to 16. If no explicit directory was given, the drive byte will be

 -3-

ZCPR 3.3 User's Guide

zero. When a specified directory is invalid, because it either does not exist
or is out of range, the current directory is substituted, but the record count
byte (offset 15 in the FCB) is set to FFH instead of 0. In this way, a program
can detect that an invalid directory and not the default directory was
specified.

Some new information channels have also been provided by moving information
that used to be kept internal to the command processor out to the message
buffer. The currently logged drive and user number are kept there now. As a
result, a program can change the logged-in directory without having to force a
warmboot. This code also made it possible to log into user areas above 15,
though this is risky because many programs are not prepared to find themselves
in those high user numbers. Consequently, this feature is optional and not
recommended for the general user. The submit-running flag has also been moved
to the message buffer, so a program can now tell if a submit job is currently
in operation, and an XSUB flag has been provided for controlling input
redirection during submit jobs. Finally, several option bytes have been
included at the beginning of the command processor code so that programs can
determine what features are implemented.

1.2. Summary of Benefits

The new features of Z33 are described in detail in other sections of this
manual. Here we describe the benefits you can gain from using ZCPR3 in
general, and the benefits of using ZCPR 3.3 as compared to ZCPR 3.0. First,
the benefits of using ZCPR3 over using ordinary CP/M.

1.2.1. Benefits over CP/M

 - Disk user areas can be used easily to organize your files. ZCPR3 has
 extensive improvements over CP/M in this area, among which are: indication of
 current disk and user in the system prompt, use of the DU: (disk/user) expres-
 sion to move between user areas, provisions for assigning meaningful names to
 given disk/user areas, and restricting access to given disk/user areas by
 unauthorized persons.

 - ZCPR3 provides an extended system environment definition that defines
 your particular computer system in significant detail, and programs running
 under a ZCPR3 environment can be more intelligent about the specifics of your
 system in a fashion impossible under CP/M. For example, such programs can
 know all about the control sequences needed to make extensive use of your
 video display, can determine how fast your microprocessor runs, can know how
 many columns per line your printer supports, and much more. This means that
 the same exact program works with radically different screen displays or other
 hardware, without cumbersome patching or installation programs.

 - Enhanced command processing makes your system much more efficient and
 responsive to your needs. Elements of this concept include multiple command
 handling, where ZCPR3 allows you to enter more than a single command at a
 time, or the PATH concept, which permits the programs you invoke to be auto-
 matically searched for in different user areas or disks from wherever you
 happen to be logged in. Another element is the SHELL feature, where complete
 turnkey menu-driven environments, command history recall and editing, or other
 user interfaces can be added to the system dynamically. The ALIAS feature
 allows the user to add new commands to his system and call them by names of

 -4-

ZCPR 3.3 User's Guide

 his choosing. An extended command processor can be added which allows the
 user to store hundreds of commands or programs in a single file. Lastly,
 batch command processing has been greatly expanded and is much easier to use
 than under CP/M.

 - An entirely new concept compared to CP/M is the concept of ERROR
 HANDLING. This allows graceful recovery in situations where the user
 inadvertently made an error when issuing a command. A user can easily edit
 the offending command or select from several alternative actions, via a
 special program called an error handler. This intelligent technique of
 handling errors becomes even more important as the user begins taking
 advantage of the advanced command processing functions of ZCPR3.

 - Greatly enhanced system security functions allow ZCPR3 to be used where
 public access to your computer system is necessary. Special features of the
 system can permit "dangerous" commands (such as erasing, copying, or renaming
 files) to be unavailable to ordinary users, yet when you or another privileged
 user is using the system these dangerous commands are available automatically.
 Areas of your computer can be restricted from access for storage of confident-
 ial and other sensitive information.

 - Over 100 useful utility programs are available which make use of ZCPR3
 extended functions. Many of these programs are equivalent to commercial
 programs for non-ZCPR3 computers which would cost the user hundreds of dollars
 to duplicate. Also, the utility programs generally share similar methods of
 usage, greatly easing the task of learning how to use these programs.

 - The complete source code to ZCPR3, it's extended segments, and most of
 the utility programs is available. This permits the technically inclined user
 to fine-tune or extend his system in whatever manner he desires. No other
 command processor for any operating system has its complete source code (over
 two megabytes, in all) distributed.

1.2.2. Benefits of Z33 over Z30

While a conversion from Z30 to Z33 does not provide the spectacular improve-
ment that the conversion to Z30 from CP/M did, it is still significant,
especially for users making heavy use of advanced functions. We suggest that
all users of Z30 make this conversion, as at a minimum you gain the benefit of
the "bug fixes" present in Z33, whether or not you make use of its new
features.

It should be noted that Z33 is a complete rewrite of Z30. Although
functionally similar, Z33 is a completely new program and only bears a slight
resemblance to Z30 in internal algorithms and code.

 - Extended Command Processors and Error Handlers can be used
 simultaneously, which is not possible under Z30.

 - A new type of transient program, call a type-3 program, can
 automatically load and execute at an address other than 100H, thereby
 preserving the contents of the TPA at address 100H for reinvocation with the
 GO command. Extended command processors, shells, and error handlers are good
 candidates for type-3 programs, as are "virtual resident" transient
 equivalents of CPR and RCP resident commands.

 -5-

ZCPR 3.3 User's Guide

 - The Z33 Command Processor reads the in-RAM Environment Descriptor to a
 far greater degree than the Z30 Command Processor does. Z33 determines
 environment parameters such as maximum disk and user, whether DU: forms can be
 accepted, and addresses of NDR, RCP, and FCP dynamically, which allows
 changing these parameters on-the-fly. This was not possible under Z30, which
 had these values hard-wired into the Command Processor at assembly time.

 - The Z33 Command Processor examines each program loaded to determine
 whether it is a ZCPR3 utility. If the loaded program is a ZCPR3 utility, Z33
 automatically installs it for your system. Z30 did not perform this automatic
 installation, with the consequence that uninstalled programs would not perform
 reliably.

 - Speed of resolving commands can be significantly faster under Z33.
 Several options are available in this regard. The user can configure Z33 to
 not always search the current directory, which was not possible under Z30.
 Also, additional functions allow bypassing of the PATH for direct invocation
 of the extended command processor. The minimum path search algorithm is
 completely reliable and is now always turned on. These improvements result in
 a system that executes commands much more rapidly that Z30, especially in
 situations where the user is logged into a floppy drive and the path and/or
 extended command processors are located on hard disk or RAMdisk.

 - Faster ZEX processing from shells such as VFILER and MENU/VMENU is
 available under Z33. Z30 is very inefficient and slow in this particular
 function.

 - Secure configurations of Z33 are much more user-friendly than secure
 configurations of Z30. A Z33 secure configuration allows the non-privileged
 user to use allowable DU: forms, while rejecting non-allowable DU: forms. DU:
 checking is much more intelligent as items such as the presence or absence of
 a corresponding named directory entry and its password is significant as to
 whether a given DU: form is be accepted. Wheel-protected commands disappear
 when a non-wheel user is using the system, which allows extended command
 processors or error handlers to intercept attempts to use privileged commands.
 If the wheel byte is enabled, password checking of named directories can be
 bypassed.

 - Several built-in commands enhanced and the SAVE command now accepts the
 number of sectors parameter described in the Z30 documentation. The RCP is
 scanned before CP-resident commands, which allows the user to override built-
 in commands with more powerful RCP-based ones. Several significant bugs
 fixed, overall reliability improved. The source code listing has been heavily
 annotated with comments, to benefit those seeking knowledge of Z33 internals.

 -6-

ZCPR 3.3 User's Guide

1.3. The History of ZCPR

1.3.1. ZCPR1

"Don't you know about ZCPR!" We remember very well as a neophyte computer
user being greeted with that exclamation by one of the experienced members of
the computer club we had joined. He could not believe that someone would
still be using CP/M. The ZCPR he was referring to was what we would now call
ZCPR1. ZCPR, which stood for "Z80 Command Processor Replacement," was the
work of a group of computer hobbyists who called themselves "The CCP Group."
They were Frank Wancho, Keith Petersen, Ron Fowler, Charlie Strom, Bob
Mathias, and Richard Conn. Sometime around 1981 Richard Conn sparked the
group's enthusiasm over rewriting the CP/M console command processor, or CCP,
to take advantage of the more efficient and elegant opcodes of the new Zilog
Z80 microprocessor, and he took the lead role in the project. With the space
opened up in the CCP, the group was able to add a number of convenient new
features.

The most important new concept was that of a search path for COM files. With
CP/M version 2, Digital Research had introduced user numbers, but the way they
were implemented made them virtually useless, because there was no way from
one user area to run or access files in another user area. ZCPR, with its
ability to automatically search drive A/user 0, overcame this problem and
opened up the possibility of putting the new user areas to effective use.
Also introduced with ZCPR was the GO command, which permitted the most
recently executed transient program to be run again without having to reload
it from disk. This was particularly a boon in the days of slow floppy drives.
Many small, but very useful and helpful, improvements were made in the
resident commands. For example, in CP/M, when a REN or SAVE command specified
a destination file that already existed, the command would simply abort. The
user would then have to erase the old file and start all over again. With
ZCPR, the REN and SAVE commands themselves would ask the user if the old file
should be overwritten in such a case.

The original ZCPR was released to the public on SIG/M volume 54, dated
February 2, 1982 (SIG/M, or Special Interest Group/Microcomputers, is the
public-domain software distribution arm of the Amateur Computer Club of New
Jersey). Several refinements were made to it by other programmers, leading to
a train of development known as NZCPR (New ZCPR). Version 1.6 of NZCPR was
released on SIG/M volume 77 at the end of October, 1982. This branch
eventually reached version NZCPR21, a version never published in disk form but
distributed over the remote access computer system network. Jim Byram, of the
Boston Computer Society CP/M Group, produced a privately distributed version
of NZCPR using only Intel 8080 code, which showed that efficient coding and
not simply the use of the new Z80 opcodes was a major factor in improving the
command processor.

1.3.2. ZCPR2

While ZCPR1 was a significant improvement over CP/M, it was not a
revolutionary advance. Richard Conn, however, had a vision of a truly
advanced operating system, and he continued the development. On Valentine's
Day, February 14, 1983, almost exactly one year after ZCPR1 appeared, ZCPR2
was released in a set of ten SIG/M volumes (98-107), an unprecedented and
monumental contribution of public-domain software.

 -7-

ZCPR 3.3 User's Guide

ZCPR2 made a very significant conceptual advance: it used memory buffers in
protected memory above the BIOS to hold new operating system modules. The
command line, which had always resided in the command processor, was put in
one of these buffers so that it would maintain its integrity across warm
boots, during which a fresh copy of the command processor is loaded from disk.
In that way multiple commands on a line could be implemented. The command
search path was placed in another one of these buffers instead of hard-coding
it into the command processor. In this way it could be changed by the user at
any time. The concept of named directories was also introduced, using still
another memory buffer to store the index of names.

Many of the utilities that we are familiar with in ZCPR3 first appeared with
ZCPR2. These include ZEX, WHEEL, HELP, PATH, PWD, MKDIR, and MENU. A
rudimentary shell concept was used in MENU. When this program placed a
command into the multiple command line buffer, it would always add its own
name at the end of the command sequence so that control would eventually
return to MENU. This worked fine for single levels of shells. Extended
command processing was also introduced with ZCPR2. The ZCPR2 documentation,
alone, ran to more than half a megabyte! It included a concepts manual, an
installation manual, a users guide, and a rationale manual (we guess Rick had
to prove he wasn't crazy in doing all this wonderful stuff).

Shortly after the initial ZCPR2 SIG/M release, an upgrade to version 2.3 was
published in volume 108. Up to this point ZCPR2 still followed in the
tradition of ZCPR1 and used Zilog opcodes. The features of ZCPR2 were now so
exciting, however, that owners of computers based on Intel's 8080 and 8085
microprocessors wanted to have them, too. Charlie Strom, a member of the
original CCP Group and well-known later as the sysop of the Compuserve CP/M
Special Interest Group, converted the command processor code and some of the
key utilities to Intel-compatible code and released the result in SIG/M volume
122. At the time, believe it or not, we were using an Intel MDS-800
microprocessor development system, the computer for which Gary Kildall
invented CP/M, and we remember very well bringing up this 8080 version of
ZCPR2. It was marvelous!

1.3.3. ZCPR3

But ZCPR2 was by no means the end of the evolution. On Bastille day, July 14,
1984, only a year and a half after the original ZCPR, Richard Conn offered
ZCPR version 3 in the form of another nine volumes of SIG/M disks (184 to
192). At this point more than one tenth of all the software ever released by
SIG/M had come from one contributor -- Richard Conn!

ZCPR3 brought both significant new concepts and major refinements. Three of
the innovations were flow control, error handling, and the message buffer.
Flow control made it possible to achieve a vastly higher degree of automatic
operation, since the command processor was no longer dependent on the user for
all command decisions but could now make wide-ranging decisions on its own.
The message buffer made possible communication between the command processor
and programs and between successively run programs. Error handlers made it
possible for improperly entered commands to be corrected, an important
facility to have in connection with multiple commands on a line. Having to
retype a single command after a mistake had been bad enough. If a whole, long

 -8-

ZCPR 3.3 User's Guide

string of commands would have to be retyped because of a mistake in a single
command, one would hesitate to take advantage of multiple command entries.

ZCPR3, by the way, unlike it predecessors, was written so that it could be
assembled to either Intel or Zilog opcodes. In the former case, the code was
considerably longer and fewer features could be included, but it would work on
an 8080 or 8085 computer.

Also diverging from previous tradition, ZCPR3 was the first ZCPR to be
actively marketed as a commercial product. Richard Conn assigned the
copyright to ZCPR3 to Echelon, Inc. in August 1984. Echelon has since
developed several commercial products which incorporate ZCPR3, among which are
Z-System (a complete disk operating system), and products which permit
automatic installation of ZCPR3 on an existing CP/M 2.2 system (Z-Com). The
combination of active marketing, support, and easy installation has made ZCPR3
the most popular ZCPR of them all, to date.

1.3.4. ZCPR31

The chain of refinements to ZCPR3 that have now led to the present version 3.3
started in March, 1985, when Jay Sage produced an experimental (unofficial)
version of ZCPR3 called ZCPR31 for use on his Z-Node 13. It was modified so
that the command processor would get the values for maximum drive and user
from the environment descriptor.

The next and most significant advances occurred in August, 1985, when four
further major changes were introduced:

 1.The code was changed to prevent the infinite loop that resulted in Z30
 when the loaded error handler could not be found (perhaps because the
 path was changed or the error handler renamed). In that situation, a
 command error would invoke the error handler. When the error handler
 could not be found, that constituted another error that caused the
 error handler to be invoked, and so on ad infinitum.

 2.The code was modified so that it could determine the addresses of the
 RCP, FCP, and NDR modules from the environment and respond to dynamic
 changes in these addresses.

 3.Additions were made to the code that allowed an extended command
 processor to return control to the command processor if it also could
 not resolve the command. The command processor would then invoke the
 error handler. In this way, a ZCPR3 system could take advantage of
 both extended command processing and error handling.

 4.So that one could easily change the program used for extended command
 processing to suit the work at hand, the code was changed to permit
 the name of the extended command processor to be stored in the message
 buffer. This is the only feature of ZCPR31 that has not been
 implemented in Z33. There are two reasons for this. First of all,
 the only space that was free in either the environment or message
 buffers was the so-called user-definable area at the end of the
 message buffer. This area was later used by the Z-Msg bulletin board
 program and TERM III telecommunications package, resulting in a
 conflict. Secondly, the introduction of the ARUNZ extended command

 -9-

ZCPR 3.3 User's Guide

 processor a month or so later rendered this feature largely
 unnecessary, since ARUNZ can effectively chain to any other extended
 command processor. At some time in the future, the message buffer
 should be extended to include, among other things, the name of the
 extended command processor (and perhaps the directory in which to find
 it) and the name and location for the submit command file (usually $$$.SUB).

In January, 1986, the first steps were taken to fix serious bugs in the way
the minimum path and root path were computed. The fix, however, had errors of
its own, and it was not until June, 1986, that Howard Goldstein finally
implemented a complete and proper solution.

The next major set of advances came in March, 1986, when Al Hawley, sysop of
Z-Node #2, introduced several new concepts, one was a new way to implement
wheel-protected commands. In Z30, wheel protection had to be hard coded into
the command processor (and RCP), and when one of the restricted commands was
invoked with the wheel off, an error message resulted. Al Hawley introduced
the idea of setting the high bit of the first character of a command to signal
that the command was off-limits to non-wheel users. This concept had several
important advantages. First, the code was shorter. Second, the new code auto-
matically made the same technique apply to commands in other modules (RCP and
FCP), so that wheel-checking code could be eliminated from those modules.
Third, when the wheel byte was off, wheel-protected commands instead of
displaying an error message simply vanished as far as the command processor
was concerned. In this way, transient programs or aliases with the same name
as the resident command could automatically step in and provide whatever
action the system implementer desired.

Al Hawley also introduced two concepts that made dealing with secure systems
easier. He made it possible for the command processor to determine
dynamically whether or not to recognize the DU form of directory reference in
response to the setting of the DUOK flag in the environment, and he allowed
the option of bypassing password checking when the wheel byte was set. These
features made it possible for a sysop or system implementer to live
comfortably with a secure system (though they did not make life any easier for
the restricted user).

The last major advance that occurred in the development of ZCPR31 resulted
from a conversation between Jay Sage and Bruce Morgen in July, 1986. They
were discussing the annoying way that ZEX functioned under shells, with the
shell program being reloaded for each command line, only to realize that ZEX
was running. It would then feed the next command line from ZEX to the
multiple command line buffer. Jay Sage then implement a small change in the
code that made this problem vanish in a flash.

Two others contributed to ZCPR31. Steve Kitahata, sysop of Z-Node #57, put in
a SAVS resident command that would save a specified number of sectors rather
than pages. This code is no longer present in Z33, but its function has been
incorporated into the SAVE command. Michael Bate performed some important
housecleaning on the code, noting that many sections of code were being
included when, because of the options selected, they were actually not needed.
He added many conditional assembly instructions to keep code size down. This
tradition has been followed in Z33.

 -10-

ZCPR 3.3 User's Guide

1.3.5. ZCPR33

At the very end of January, 1987, Richard Conn decided to end his active
participation with ZCPR3. Echelon approached Jay Sage about writing the
official ZCPR version 3.3 release, based on the experimental ZCPR31. He
agreed. During the months of February, March, and April of 1987 an enormous
amount of additional development took place, the results of which are
described in the remainder of this manual. The decision was made that Z33
would no longer make any attempt to support 8080/8085 computers. The code has
been written using Zilog mnemonics, and extensive use has been made of Z80-
specific instructions, including relative jumps, block moves, block searches,
direct word transfers to register pairs other than HL, 16-bit subtractions,
and the alternate register set. So far no use has been made of the index
registers.

During these last three months of intense work, many individuals assisted by
testing the code and offering suggestions. Besides those mentioned earlier,
Roger Warren (sysop, Z-Node #9) and Dreas Nielsen have been particularly
helpful.

One individual, Howard Goldstein, must be singled out for the transcendent
role he has played in the development of ZCPR33. We have been in constant
communication with him during the development process, and he has been a
sounding board for all the new concepts. In his capacity as beta-tester
extraordinaire, he has subjected the code to remarkable scrutiny, uncovering
countless minor and occasional serious flaws. He has also suggested dozens of
ways to shorten the code. Above all, working with him has been a pleasure and
delight.

1.4. Definitions

Some important terms used in this guide may not be familiar to the reader--so
we will define them here.

Command Processor - The command processor, or CPR, is the part of the
operating system that obtains commands from the user and processes them.
These commands may invoke an application program (word processor, spreadsheet,
etc.) or perform a utility function (renaming files, showing directories of
files, etc.)

Environment Descriptor - This is a special block of memory in the operating
system which contains information about how the computer is configured. The
ZCPR3 Command Processor and ZCPR3-specific programs refer to the environment
descriptor to determine specific information about the system, information
that is unavailable under ordinary CP/M. Several examples are: the number of
disk drives, the CPU clock speed, and the number of rows and columns on the
terminal screen.

Wheel - As part of system security, a specific memory location in the
computer's main operating system is designated as the "wheel byte". The wheel
byte is considered "off" when that memory location contains a binary zero
value and "on" otherwise. Certain commands, especially ones, like ERA, that
could damage the system, will not operate when the wheel byte is off.

 -11-

ZCPR 3.3 User's Guide

 This Page Left Blank

 -12-

ZCPR 3.3 User's Guide

 2. ZCPR33 COMMAND PROCESSING FUNCTIONS

This section of the user guide describes the enhanced command processing
facilities provided by Z33 and explains how to make use of the new features.

2.1. Automatic Installation of Transient Programs

How many times have you picked up a new ZCPR3 program, tried to run it, and
found that it would not work properly on your system? And how many times did
you eventually discover that the trouble was that you forgot to install it
using Z3INS? It certainly happened to us many times. Well, with Z33 it will
not happen again. The command processor is now smart enough to install the
program automatically just before it executes the code.

ZCPR3 programs need only one piece of information -- the address of the
environment descriptor module in memory. The environment descriptor contains
all the rest of the information a program needs to avail itself of Z-System
services. ZCPR3 programs have this address imbedded in a standard location
near the beginning of the code, shortly after a text string "Z3ENV" that
identifies the program as a ZCPR3 program. What Z3INS does when it installs a
program is to write the address of the environment descriptor into the file in
the right place. The Z33 command processor knows the environment address and
puts it into place in the loaded memory image.

Note that the installation is performed at run time, not at load time. Thus
the GET command, for example, will load a file from disk without making any
changes to the image in memory. It is only when the program is executed,
either by a direct invocation or by the GO or JUMP commands, that the
installation is carried out. Note also that the installation is performed no
matter where in memory the file has been loaded. It is not limited to auto-
matic installation at 100H.

To illustrate these points, consider the following unusual example. Suppose
you create a single file (GROUP.OBJ) that is a concatenation of four
individual 1K programs designed to run, let's say, at A000H, A400H, A800H, and
AC00H. Each of these programs would have its own 'Z3ENV' header, and the
entire collection would be loaded into memory using the command

 GET A000 GROUP.OBJ

Then you could run the third program, for example, by issuing the command

 JUMP A800 COMMAND-TAIL

The piece of code at A800H would be installed automatically as it was run.

One word of caution is in order in case you ever run programs from inside a
debugger, such as DDT or DSD. After you have gotten used to the automatic
installation feature of Z33, you will probably forget completely about the
issue of installation. Unfortunately, the debuggers do not perform automatic
installation, and the programs will not run correctly under the debugger

 -13-

ZCPR 3.3 User's Guide

unless they have been installed for the system using Z3INS or ZRIP or have
been manually installed from inside the debugger by poking in the correct
environment address in the appropriate place. So you might not want to throw
away ZRIP just yet. In fact, it is probably not a bad idea from time to time
to run ZRIP on your entire disk to hard-install all the programs.

Z33 actually provides a second form of automatic installation that might be of
use to programmers in some special situations. It involves passing the
address of the environment module in a microprocessor register and is
described in the programmer's reference manual.

2.2. Simultaneous Use of Error Handlers and ECPs

Z30 provided two very powerful and useful features to users -- error handlers
and extended command processing. Unfortunately, it was an either-or
situation; only one of these features could be used at a time. Now you can
have both together!

Let's start with error handlers. As an option in Z30, when a command was
entered that could not be found as a resident command in one of the ZCPR3
modules (the command processor, the resident command package, or the flow
command package) or as a transient program (a COM file), a special error
command could be executed instead. Error handler programs invoked this way
could locate the bad command line and provide a variety of services to deal
with the error. The simplest error handlers just reported the error, either
cancelling any additional commands pending in the command buffer or skipping
the bad one and going on with the others. The more advanced error handlers
would allow the user to edit the command line so that the error could be
corrected and command processing resumed.

Alternatively, one could configure the system with an extended command
processor (ECP), whose standard default name was CMDRUN.COM. If a command
such as

 PROGNAME TOKEN1 TOKEN2 REST-OF-TAIL

could not be executed as entered because no file called PROGNAME.COM could be
found, the command processor would effectively convert it to the command

 CMDRUN PROGNAME TOKEN1 TOKEN2 REST-OF-TAIL

But what if CMDRUN could not process this command line correctly? Under Z30,
all it could do was display an error message to the user and return control to
the command processor. This meant that no error handling service could be
made available. Even worse, any pending commands in the multiple command line
buffer would proceed to be executed, even though their operation depended on
the successful execution of the first command. This was not a good situation.

 -14-

ZCPR 3.3 User's Guide

With Z33, a program designed to function as an ECP can determine that it was
invoked as an extended command processor. Furthermore, it has a way to signal
the command processor on return that an error occurred and that error handling
services should be engaged. Thus the operation of the extended command
processor is transparent to the user. The command

 PROGNAME TAIL

(assuming there is no resident command of that name) will initiate one of the
following actions. If PROGNAME.COM exists along the search path, it will be
loaded and run. If not, the command processor will build the command line

 CMDRUN PROGNAME TAIL

and, if CMDRUN.COM can be found and can execute this command line, it will do
so. If not, either because the ECP could not be found or because the ECP
could not process the command, the command processor error handling facilities
will be engaged just as if there had been no extended command processor in the
first place.

Two programs designed to function as extended command processors under Z33 are
presently available: LX and ARUNZ. We will briefly describe the basic
features of each. Both have additional capabilities that are not covered
here.

2.2.1. LX Extended Command Processor

LX (Library eXecute) enables one to keep a number of individual transient
programs (COM files) in a library called COMMAND.LBR. There are two reasons
why one might want to do this.

First, programs take up space on a disk in fixed-size units, typically of lK,
2K, or 4K bytes. Even a tiny file takes up one full unit. When files are
packed into libraries, however, the size of the storage unit is only 128
bytes. Consequently, libraries are often significantly smaller in size than
he space that would be occupied by the individual files. Packing several
dozen programs into a library file can save significant space on disk, up to
hundreds of kilobytes.

The second advantage is that the entire library generally takes up only one
or two directory entries, while the individual programs would take up one for
each program. Since a disk has a fixed size directory, it can become full
because all available directory entries are used up even though space for data
storage is still available.

The syntax of LX when invoked manually is as follows:

 LX PROGNAME TAIL

When this command line is executed, LX looks in COMMAND.LBR for the file
PROGNAME.COM. If it finds it, it extracts the file from the library and loads
it into the TPA for execution. It parses the TAIL just as the command
processor would have and transfers execution to the loaded program. Thus, if
LX.COM is renamed to CMDRUN.COM, one can execute a program that is in
COMMAND.LBR, just as if it were available as an individual file on the disk,

 -15-

ZCPR 3.3 User's Guide

with only a small speed penalty resulting from the extra step of invoking the
extended command processor.

2.2.2. ARUNZ Extended Command Processor

ARUNZ (Alias RUN ZCPR) is an alias script processor. Standalone aliases are
single COM files comprising two parts: the prototype command script and the
script interpreter. The former is no more than 255 bytes long (and usually
much less); the latter occupies the rest of the 1K file. The philosophy behind
ARUNZ was to separate these functions. Rather than duplicate the script
interpreter for each alias, a single program, ARUNZ.COM, contains a very
powerful interpreter with much more extensive parameter evaluation capability.
All of the prototype command scripts are kept in a single ASCII text file,
ALIAS.CMD.

When the command line

 ARUNZ NAME TAIL

is entered, ARUNZ scans the ALIAS.CMD file for a line beginning with NAME. If
it finds it, the rest of that line in the file is taken as the alias script.
Parameter expressions are expanded, any commands pending in the multiple
command line buffer after the ARUNZ command are appended to the expanded
script, and the resulting command line is placed into the command line buffer.
Control is then returned to the command processor. If no line beginning with
NAME is found, ARUNZ returns control to the command processor with flags set
to signal the command processor to engage error handling. With ARUNZ.COM
renamed to CMDRUN.COM, alias scripts in ALIAS.CMD can be executed just as if
they were standalone aliases.

Besides automating many complex tasks using alias scripts, ARUNZ can be used
to correct common typing errors and/or offer alternative names for commands.
If you often type 'REMANE' when you mean 'RENAME', just enter a script

 REMANE sys:rename $*

in ALIAS.CMD. Your mistyped command will then execute correctly. The disk
space required for this alias is a mere 22 bytes, and the inclusion of the
explicit directory where RENAME is kept (SYS in this example) will speed
operation. If you don't like typing out the entire command 'CRUNCH', just
enter the alias script (ARUNZ version 0.9C and later)

 CR.UNC sys:crunch $*

Again, this costs just 22 bytes. It will allow you to enter the command as
"CR", CRU", CRUN", or "CRUNC" in addition to "CRUNCH". If you also tend to
mistype it, as I do, as "CRUCNH". just expand the script to

 CR.UNC=CRUCNH sys:crunch $*

That only costs 7 bytes more. In general, the cost of ARUNZ aliases is so
small that one can easily have hundreds of them.

 -16-

ZCPR 3.3 User's Guide

2.2.3. Extended Command Processor Recommendations

We recommend using ARUNZ as the extended command processor in most
circumstances. The main reason for this is that ARUNZ has enormously wide-
ranging capabilities that can include the functions of other candidate ECPs
such as LX or ZEX. For example, if there is a program called LXCMD in
COMMAND.LBR, you can include the alias script

 LXCMD LX LXCMD $*

in ALIAS.CMD. Then when you enter the command

 LXCMD TAIL
and LXCMD.COM is not found, the following ECP command line will be executed:

 CMDRUN LXCMD TAIL

With ARUNZ as CMDRUN, this will cause the alias script above to be executed,
giving the command

 LX LXCMD TAIL

just as if LX had been the extended command processor. At the same time, you
might have a ZEX script file called ZEXCMD.ZEX that you would like to run when
you simply enter the command name. This will happen if ALIAS.CMD contains the
script

 ZEXCMD ZEX ZEXCMD $*

Then when you enter the command
 ZEXCMD TAIL

and ZEXCMD.COM is not found, the ARUNZ extended command processor will run the
ZEXCMD alias, which will generate the command line

 ZEX ZEXCMD TAIL

This is just what you wanted. The only disadvantage to this procedure is that
you have to enter an alias script into ALIAS.CMD for each program in
CONMAND.LBR and each ZEX script that you want to be invoked automatically in
this way. When you add a new program to COMMAND.LBR, for example, you will
have to add a new script to ALIAS.CMD also.

2.3. Enhanced Error Handling Under ZCPR33

The error handling facility in ZCPR3 is one of its most valuable and important
features and one of the things that sets it apart so dramatically from either
CP/M or MS-DOS. The Z33 command processor has augmented this facility
dramatically both in power and in scope.

Under Z30, error handling was engaged only when a command could not be
resolved as a resident command or located as a COM file along the search path.
When that happened, the command processor, instead of executing the next

 -17-

ZCPR 3.3 User's Guide

command in the multiple command buffer, would substitute an error handling
command line stored in the message buffer (one of the ZCPR system segments).
Although this error command line can contain a multiple command sequence, it
typically contains a single command that invokes a special program designed to
process the error that occurred. This error handling program uses a pointer
stored in the message buffer to locate the offending command in the multiple
command line buffer. The error handler program can then display that command
line to the user and allow him to repair it by editing or substitution. No
information is passed to the error handler, however, to indicate what kind of
error occurred.

Error handling under Z33 has been greatly extended in scope. It is no longer
invoked solely when a COM file cannot be found; many other situations cause it
to be engaged.

First, several different kinds of errors can occur in the command processor
itself. Failure to locate a specified COM file is just one of them. Other
situations are:

 1) the user attempted to change directories when directory changing was
 disabled for lack of wheel status;
 2) an attempt was made to log into an improper directory, either because
 a directory with the specified name does not exist or because it
 specifies a user number or drive higher than what is allowed;
 3) an incorrect password was entered at a prompt for password entry;
 4) a command did not have a legal form (it either contained an ambiguous
 program name or an explicit file type);
 5) an ECP called by the command processor was unable to process the
 command and returned control to the command processor;
 6) a COM or other file could not be found in a situation that did not
 engage extended command processing (for example, when GET could not
 locate the file or an explicit directory was specified with a
 command);
 7) an ambiguous file specification was given where one is not allowed
 (e.g., in the SAVE, GET, and REN resident commands);
 8) a bad number was given with a resident command that expects a number
 (e.g., GET, JUMP, SAVE);
 9) a file specified for a resident command (e.g., REN, TYPE, LIST) could
 not be found; and
 10) a file attempted to load past the end of the available TPA.

In addition, error handling can now be invoked from outside the command
processor. Any program code, including resident commands in an RCP or FCP and
transient commands, can return control to the command processor with a flag
set that tells the command processor to engage error handling.

Besides augmenting the SCOPE of error handling, Z33 has increased the POWER of
error handling by making available information about the cause of the error.
The ten error types listed above for command processor errors each return a
specific code in a message buffer byte. External programs can also return
error codes. Advanced error handlers will have the ability not only to
display the bad command line to the user but also to give an indication of the
possible nature of the error. The error codes presently defined and the
interface specifications are given in the programmers' reference manual.

 -18-

ZCPR 3.3 User's Guide

2.4. The Type-3 Environment

Under Z30 there were two types of program environments defined. Type-1
programs have external environments, the program header containing only the
address of the memory-resident environment descriptor module. Type-2 programs
have an internal environment, the entire environment module actually residing
in the program. The latter was a vestige from ZCPR2 and is infrequently used.
Since it can be useful as a way to allow a ZCPR3 program to work when run
under standard CP/M, Z33 detects the type-2 environment and skips the
autoinstall process (which would otherwise corrupt the internal environment
descriptor).

For Z33 a new type-3 environment has been defined. In addition to the address
of the environment module, it contains the address at which the program is
designed to run. When Z33 loads a program, it examines the header. If it
detects a type-3 environment, it reads the load address from the header and
proceeds to load the program to the indicated address and execute it at that
address. Here are some examples where programs with a type-3 environment are
very useful.

Suppose you have just performed some program patching using a debugger and
have just exited from the debugger. You want to save the new version of the
program in a 36-page file named NEWPROG.COM. You enter the command

 SABE 36 NEWPROG.COM

not noticing until it is too late that you typed the SAVE command incorrectly.
The command processor, unable to find SABE.COM, loads and runs the extended
command processor. When the ECP also is unable to process the command, it
invokes the error handler. The error handler very nicely presents the
erroneous line and allows you to edit the command line, replacing the 'B' with
the intended 'V'. But what good would that do now? If the ECP program had not
already wiped out the memory image you were about to save, the error handler
would have done it! Well, with Z33 the ECPs and error handlers can have type-
3 environments that allow them to load high in memory, at an address of 8000H
for example. In that case, unless the memory image one planned to save was
more than 32K bytes long (a rare situation), the image is still intact. The
command line can be edited in the error handler and rerun. Thus extended
command processors and error handlers are two prime candidates for type-3
environments.

Example two. You have just run your file copying program and copied some
files. You want to rerun the program using the GO command to copy some more
programs, but you can't remember the exact names of the other files. You run
the DIR command to locate the files. Unfortunately, you forgot that the RCP
with the DIR command was no longer loaded (perhaps you had loaded DEBUG.RCP to
do some resident debugging work). Instead, the transient DIR.COM ran, and
when you tried to repeat the copy operation using the GO command, it did not
work; DIR.COM had overwritten it. With Z33 you can have transient versions of
the resident commands with type-3 environments so that they operate high in
memory and do not interfere with the lower TPA where typical transient
programs operate. In this way the transient programs will function in many
ways like resident commands. We call them virtual resident programs.

 -19-

ZCPR 3.3 User's Guide

Some good virtual-resident candidates are: CD, DIR, ECHO (renamed from XECHO),
ERA (renamed from ERASE), GOTO, REG, REN (renamed from RENAME), and WHL
(renamed from WHEEL). A transient version of SAVE could also be quite useful.
The ZSIG (Z System Special Interest Group) program FCP10 and the forthcoming
Z33FCP flow control packages can be configured to load the transient IF
processor (IF.COM) in high memory also, so that its operation will not affect
low TPA (remember, the user may not always know when it -- and not the
resident FCP command -- has run). Thus one might have an alias with a script
including:

 IF EX $1.COM
 REN $1.BAK=$l.COM
 FI
 SAVE 36 $1.COM

The first line might be carried out by the resident FCP code or by IF.COM.
With Z33FCP and an IF.COM assembled to run in high memory, it will not make
any difference. Similarly, the REN command will be the resident version if
one is available or a transient REN.COM otherwise. Again, with a type-3
environment, it will not matter.

Now for the last example. Some of you may be familiar with programs based on
the technique pioneered by FINDERR. This is a program that runs immediately
after another program and examines the memory image left behind by the first
program. FINDERR was designed to look for the error count left behind by
assemblers and compilers. Based on the error count, FINDERR would set or
clear the program error flag in the message buffer so that flow control could
be used to proceed differently depending on whether or not the previous
operation was successful. A more recent program, MEX2Z, looks at the command
line left in memory by the MEX communication program. MEX2Z can pick up any
commands in the command line after the MEX exit command and can feed those
into the ZCPR3 command line followed by another command of "MEX". This gives
MEX a virtual shelling capability. To the user it feels as though he can
enter operating system commands from inside MEX. Those commands are executed,
and then control is returned to MEX. Amazing!

Programs of this type can face one insurmountable problem. Suppose a compiler
or assembler keeps its error count at address 140H, or suppose MEX kept its
command line buffer at 120H. There would be no way for a transient program,
even if it were the minimum length of one record (80H bytes), to run without
overwriting the very information it wants to examine. Again the type-3
environment comes to the rescue. By making the program load at a different
memory address (say 200H in the above examples), the program will have no
trouble examining the target memory. This application is quite real in the
case of MEX2Z. One would really like MEX to return at the same baud rate that
it was set to at the time the 'shelling' took place. The Z30 version of MEX2Z
always returned to MEX at MEX's default initial baud rate. Since the baud rate
byte is in the first record of memory, there was nothing MEX2Z could do about
it under Z30.

2.5. Enhanced Command Search Control

The automatic path searching capability of ZCPR3 makes for a friendly, easy-
to-use operating environment by freeing the user of the need to keep track of
where programs are stored in the system. Under Z30, if the program you

 -20-

ZCPR 3.3 User's Guide

requested could not be found in the currently logged directory, then the user-
specified directory path would be searched.

While this path searching is very convenient, it does have one drawback -- it
slows down system response. This is not so much a problem when the command
really is in another directory along the search path. Then the search is
worthwhile. But what if the command was mistyped? Then all the time spent
searching along the path and attempting to process the command with the
extended command processor is a waste. The system doesn't do anything useful
for us until the error handler is finally loaded.

Another problem with path searching arises with the greatly increased use of
alias scripts with the ARUNZ extended command processor. It is not unusual to
find that more than half the commands on a system are ARUNZ aliases; sometimes
the percentage is much larger. The time spent searching for these commands
along the path before the ECP is invoked is wasted time.

Z33 offers solutions to these problems by giving the user greater control over
when and how path searching is performed. Two improvements have been made in
the basic operation of the path search.

2.5.1. Search of Current Directory (SCANCUR)

Under Z30, if the command processor was configured to allow directory
specifications on commands, then the current directory was always prefixed to
the symbolic path in the path buffer. Thus, when no explicit directory was
included with the command, the current directory was always searched first.
When an explicit directory was given, the current directory was searched
second. For us and for many other users, however, the commands that we use
most often are in directories other than the currently logged directory (on a
RAMdisk, for example). Naturally, the system will respond faster (much, much
faster in the case of a RAM disk) if this directory is searched first.

In Z33 the SCANCUR option works correctly. SCANCUR is defined in the
Z33HDR.LIB file which is read during assembly. We strongly recommend setting
SCANCUR to NO or FALSE so that the current directory is not automatically
added to the path. If you want the current directory to be searched, you must
include the expression '$$' in the symbolic path.

2.5.1.1. Precautions if using SCANCUR False

If SCANCUR is turned off, special precautions must be taken in the system
initialization. These precautions are present in official Echelon
implementations of ZCPR3, such as the SB180/DT42/AMPRO computers and Z-Com and
"bootable disk" software products, so the following discussion only applies to
users with unofficial implementations of ZCPR3 (such as those available on
some remote access systems). If your coldboot code (special code in the BIOS
that runs only when the computer is first turned on) does not set up a search
path but instead leaves the path initialized to an empty state, then a startup
command line such as "STARTUP" will not run, since the path will include no
directory entries to search and the current directory is not automatically
added to the path. There are two possible remedies in such a situation.

 -21-

ZCPR 3.3 User’s Guide

One remedy is to modify the coldboot code in the BIOS to set up an initial
path of A0 by putting the single byte 01 at the very beginning of an otherwise
empty path. The code for this would be

 LD A,01 ; Put 01 in register A
 LD (EXPATH),A ; Copy to first byte in path

Since this solution requires adding code to the BIOS, it may not be easy to
implement, especially for anyone who is not an experienced assembly-language
programmer.

The second solution is to change the startup command line. This can generally
be accomplished with a simple patch; there is no need to rewrite the BIOS,
with all of the complications that entails. Typical ZCPR3 BIOS coldboot
routines set up the multiple command line with an initial command, usually an
alias containing the rest of the commands required to initialize the system
fully. The most common initial command line is "STARTUP". To make this run
with no path defined, patch the BIOS code to change this command to
%:START<0>" (the 'P' is replaced by a binary 0). You can use the techniques
described in the chapter on installation to make this change using either a
debugger program or a disk utility. If you need help doing this, your local
Z-Node sysop is a good person to turn to. Obviously, you must also, then,
rename the alias to START.COM. You must also make sure that the commands in
this startup alias have some kind of directory prefix, at least until a path
is set up. A typical START.COM alias might look like this:

 :LDR SYS.ENV,SYS.RCP,SYS.FCP,SYS.NDR
 :PATH RAM SYS RAM
 <other commands>

The LDR command (with a colon prefix) must come before the path command (also
with a colon prefix), because the system will not know where the path is until
the SYS.ENV module has been loaded. The 'other commands' in the above alias
do not need colon prefixes, since the path has been established by that point.

Even if you decide that you do want the current directory to be included in
the search path, with SCANCUR off you can put it where you want in the
sequence. We typically use a path that looks like:

 RAM SYS ASM $$ RAM

The RAM disk is searched first, then the SYS directory on our system floppy,
then the directory where we keep our assembly-language tools, and only then
the current directory. Since the most frequently used commands are kept on
the RAM disk, most commands are resolved immediately. The first three
directories in the search path account for more than 95% of the commands
entered. System speed improves dramatically.

2.5.1.2. Root of Path and Minimum Path

You may have noticed the odd looking repetition of the RAM directory in our
sample path. The reason for adding RAM at the end is that the final path
element, known as the 'root' of the path (no matter what its actual name is),
is often used in a special way. For example, the command processor can be
configured to look only in this root directory for the extended command

 -22-

ZCPR 3.3 User's Guide

processor. Programs may be configured to look in the root directory for their
auxiliary files.

If the RAM directory had already been searched unsuccessfully as the first
path element, it would be foolish to search it again when the fifth element of
the path was reached. (And if we are currently logged into the RAM directory,
it would be searched three times!) Indeed, Z33 is smart enough not to do
that. It has a feature called 'minpath' that eliminates duplicate entries
before the search is actually performed. Z30 also offered this feature as an
option, but it was coded incorrectly and generally could not be used. In Z33
minpath is always used.

2.5.1.3. Forcing a Search of the Current Directory

Now that we have improved efficiency for most of our commands, what about the
case where we know the command we want IS in the current directory? Do we
have to search the whole path before we get to it? No! By entering just a
colon in front of the command, the current directory is automatically added to
the beginning of the path. Since typing a colon can be a nuisance (it is a
shifted character on most keyboards), Z33 offers the option (controlled by the
ALTCOLON equate in Z33HDR.LIB) of typing another prefix character (default is
period) instead. If the file is not located in the current directory, the
rest of the path is still searched.

Note that the period (or other alternate character) cannot substitute for a
colon elsewhere on the command line. In most cases, the alternate colon
character will be recognized only if it is the first character of the command
(i.e., the first character in the multiple command line or the first character
after a semicolon command separator). If the ALTSPACE and ALTONLY options
described below are both true, then the alternate colon character can be
preceded by spaces.

2.5.2. Directory Prefixes

Now, suppose we go to the trouble to specify the exact directory where a file
is located. Naturally we want that directory to be searched first. But
consider further what would normally happen if we made a typing mistake and
entered, for example

 TURBO:TURVO

when we wanted to run TURBO pascal. In Z30, after TURVO.COM was not found in
the TURBO directory, the rest of the path would be searched. Then the
extended command processor would be invoked. Finally the error handler would
come to our rescue. Z33 makes the assumption (controlled by the SKIPPATH
equate in Z33RDR.LIB) that if we name a specific directory, we expect the file
to be there and do not expect it to be somewhere else or to be an extended
command process. Therefore, Z33 skips the path search and extended command
processing. If the file cannot be found in the specified directory, then the
command processor goes straight to the error handler for a quick fixup.

2.5.3. Direct invocation of Extended Command Processor

Finally, suppose we know that the command we are entering is intended for the
extended command processor. As noted earlier, it is a waste of time to search

 -23-

ZCPR 3.3 User's Guide

the entire path looking for the command. Even if it is found, it is not the
one we want anyway! In Z33, commands entered with a special prefix are sent
out for extended command processing immediately. There are several options
for this prefix. The default choice is either a space character (since it is
very easy to type) or a slash ('/'). If you prefer to be able to enter spaces
freely on the command line, then the optional alternate character can be made
mandatory (ALTONLY option). If you are satisfied with the space character
only, you can save code in the command processor by disabling the alternate
character (ALTSPACE option).

2.5.4. Summary of Path Search Rules

Here is a summary of the path searching rules for the standard Z33
configuration.

1.If a command is entered with no prefix and it is not a resident
 command, the normal path is searched. The current directory is
 included only if it is specified explicitly in the user's symbolic
 path. If the COM file is not found, the command is passed to the
 extended command processor. If that also fails, control is
 transferred to the error handler.

2.If a colon or a period prefix is placed before the command, everything
 is the same as described under (1) except that the current directory
 is added at the head of the path. Also, when any prefix of any kind
 is used with a command, resident commands are bypassed.

3.If a specific directory prefix is placed before the command, only that
 directory is searched for the command; if the COM file is not found
 there, then control is transferred directly to the error handler.

4.If the command is prefixed by a blank space or a slash, the command is
 sent directly to the extended command processor without any search for
 a COM file.

There is one set of exceptions to the above rules. Flow control commands,
such as IF, ELSE, or FI, are ALWAYS processed by the FCP module, no matter
what kind of prefix is placed in front of them.

2.6. Command Acquisition Hierarchy

ZCPR3 offers a significantly wide range of options regarding how commands can
be generated by the system. An obvious function of ZCPR3 as a command
processor is to seek the next command to process. This search for new
commands is called command acquisition, and there is a specific priority
system (hierarchy) which determines what the next command to be processed will
be, as there may be different commands waiting to be executed on several
levels. It is worth noting that ZCPR3 possesses more levels of command
hierarchy than any other command processor for personal computers. To fully
use some of ZCPR3's advanced functions, you should understand this hierarchy.

 -24-

ZCPR 3.3 User's Guide

2.6.1. Z30 Command Acquisition Hierarchy

Under Z30, each time the command processor was ready for another command, it
would seek it from the following sources in the following order:

 1. the multiple command line buffer. If any commands remained in the
 multiple command line buffer, they would be executed first.

 2. a submit file. Once the multiple command line buffer was empty, if
 the submit facility was enabled, the command processor would search
 for a file called '$$$.SUB' on the A drive and current user area. If
 one was found, the last record in that file would be read and used as
 the command line. This record would then be deleted from the file.

 3. the shell stack. The shell stack can contain several (usually four)
 command lines in a push-down stack. If the stack was not empty, the
 command line on the top of the stack would be copied to the command
 line buffer and executed.

 4. the user. Finally, if none of the above sources could provide a
 command line, as a last resort the user would be prompted to enter a
 command!

One problem with the above scheme was the way it handled the operation of ZEX,
the memory-resident batch command processor (similar to submit). If no shell
command and no submit file were present, everything was fine. ZEX would
provide the input to the user prompt. A problem arose, however, when a shell
was running. Unless special action was taken, the shell command would run and
would take its input from a running ZEX script. This would usually not
produce the intended results. Consequently, shells like VFILER and MENU
included special code to detect the presence of a running ZEX job and to pass
the next ZEX input line to the command processor. This meant that the shells
would be reloaded from disk after each ZEX command line, only to discover that
ZEX was running. They would then pass on the command line and return control
to the command processor. This pointless loading of the shell program
resulted in very slow and annoying operation, especially on floppy-disk-based
systems.

2.6.2. Z33 Command Acquisition Hierarchy

Under Z33, a different philosophical viewpoint has been taken. It may not
satisfy all users, but we think that it will satisfy many more than the old
scheme did. Z33 treats an entire ZEX script as if it were a single virtual
(possibly very long) multiple command line. Once a ZEX job is started, it
maintains control and continues to feed its input to the command processor
until the job is completed. The command source hierarchy under Z33 is, thus,
as follows:

 1. the multiple command line buffer
 2. a ZEX job
 3. a submit file
 4. a shell command
 5. user input

 -25-

ZCPR 3.3 User's Guide

A command from any level in the hierarchy can immediately initiate a process
that is higher in the hierarchy. A command in the multiple command line
buffer can spawn additional commands (this is what aliases do). ZEX jobs can
supply a series of multiple command lines (but not, at present, start another
ZEX process). A submit job can supply command lines or initiate a ZEX process
or invoke another submit job (the second submit job appends its commands to
those of the first). A shell can generate command lines, start a ZEX process,
initiate a submit job, or load another shell onto the stack and begin to run
that shell instead. Finally, the user can start anything from the command
prompt.

Conversely, commands from a given level may produce strange (though
predictable) results when they initiate processes at a lower level. If a ZEX
job issues a submit command, the '$$$.SUB' file will be created, but it will
not take effect until the entire ZEX script has finished executing. If a ZEX
job invokes a shell program, the name of the shell should be installed on the
shell stack, but the shell should not begin to operate until the ZEX script
has run to completion. (With recently written or updated shells, however, we
have discovered that this does not generally work. A very simple addition to
the shell coding is required to make them work predictably in this situation.)
Many users have been puzzled by what happens when a shell command is included
in the middle of a multiple command sequence. According to the above
hierarchy (shells are below the multiple command line), the shell will install
itself on the shell stack but will not begin to run until the rest of the
commands in the existing command line have been completed.

2.6.3. Improvements to SUBMIT Processing

Since we have been discussing a change in the way ZEX batch processing
operates, this is a logical place to mention some very important changes in
the way submit processing is handled.

Under Z30, SUB.COM created the $$$.SUB files of commands on drive A in the
current user area. This caused some serious difficulties. If a command in
the submit job changed the logged-in user number, the command processor would
lose track of the $$$.SUB file, and batch processing would stop. Even more
bizarre behavior would occur if one later returned to the former user area and
initiated a warm boot: the batch job would start up again!

Z33 has fixed these problems by writing and looking for the $$$.SUB file in
user 0. Submit jobs can now freely change user numbers just as ZEX scripts
could.

Submit control flags, paralleling those for ZEX, have been added to the
message buffer. It is now possible for any program to detect that a submit
job is in process. An input redirection flag, like the one for ZEX, could be
used by an advanced version of XSUB (not yet available) to temporarily halt
input from a submit/xsub job.

In the past we chose to omit the submit facility from our ZCPR3 command
processor implementation. With these changes in Z33, the submit facility has
become so much more attractive that we now do include it (its major advantage
over ZEX is that the full TPA is available).

 -26-

ZCPR 3.3 User's Guide

There is now an option to control the display of submit prompts on the screen.
If the SUBNOISE equate is set to 0, no command line input will be echoed, and
the entire submit script will run as if it were a single, long multiple
command line. If SUBNOISE is set to 1, then echoing of the command lines is
controlled by the QUIET flag in the environment descriptor. If the QUIET flag
is set, command lines will not be echoed. Finally, if SUBNOISE is set to a
value higher than 1, submit command lines will always be echoed, as they were
in Z30.

2.7. Command Resolution Hierarchy

In the previous section we discussed the hierarchy of sources from which the
command processor seeks new command line input. Here we will consider the
hierarchy by which the command processor attempts to execute each individual
command after the command has been acquired. Again, this is a topic which you
should understand to fully use the advanced features of ZCPR3.

2.7.1. System Command Resources

In a ZCPR3 system, there are two general classes of commands: resident
commands and transient commands. Resident command code is found in memory,
and transient command code is found on disk.
There are three sources of resident commands: the command processor itself,
the resident command package (RCP), and the flow command package (FCP).
Implementation of the RCP and FCP are each optional, and, when implemented,
the code in the module can be changed at any time by loading new packages into
memory from disk. The command processor code is fixed.
Transient commands are either direct commands (COM files) or extended commands
processed by an extended command processor. The way the command processor
code is currently written, the extended command processor code must be
contained in a COM file; it cannot come from from one of the resident command
modules. One might want to change this in the future so that one can have a
fast resident extended command processor.
A command with a particular name could be found in any or all of these
sources. When presented with a command, the command processor tries to
resolve it according to the following hierarchy:

 1. First the FCP is scanned to see if the command is a flow control
 command. The command verb (the name without any directory or other
 prefix) is presented to the FCP no matter what prefix might be
 attached to it. It makes no difference if there is a colon or a
 period, a space. or a DU or DIR (named directory) prefix. The FCP
 always gets the first shot at any command. There are two related
 reasons for this. First, flow control commands can change the flow
 state, and the flow state determines whether other commands are
 executed or flushed. Secondly, flow control commands must be executed
 even if the current flow state is false, since they are the only
 commands that can change a false flow state back to a true flow state.

 2. If the current flow state is false, the current command is flushed,
 and the next command is processed.

 -27-

ZCPR 3.3 User's Guide

 3. If the command verb is not found in the FCP command table, and the
 command has no prefix (colon, dot, space, slash, or explicit directory
 specifier) then the other two resident command modules (RCP and
 command processor) are scanned. If the command had a prefix, the
 resident modules other than the FCP are skipped. In Z30 the command
 processor was scanned before the RCP, but this order has been reversed
 in Z33. This change was made so that one would have the option of
 loading an RCP module with a more powerful version of a command
 processor-resident command and have the RCP command effectively
 replace the command processor one. Before, once a command was
 implemented in the command processor, one was stuck with it for good.

 4. If the command could not be found in any of the resident modules or if
 the command verb had a prefix, the command is treated as a possible
 transient program. If the command has a space or slash character as a
 prefix, then the command is sent immediately to the extended command
 processor without any attempt being made to resolve it as a normal
 transient program. There is also one other special case. If the
 command verb is a null command (a prefix only was present), then the
 command is interpreted as a command to change the logged-in directory.
 Otherwise, the program is searched for as a transient program
 according to the rules described above under the section on paths.

 5. If a COM file with the name of the command cannot be found anywhere
 along the search path, and if the command did not have an explicit
 directory prefix, the entire command line is passed on to the extended
 command processor (ECP). The ECP is itself a transient program and
 must be located by searching the disk directories. The path used for
 the ECP search can either be the entire path or just the root element.
 This is controlled by the ROOTONLY equate in Z33HDR.LIB. Note that
 the root element is not necessarily a directory with the name ROOT; it
 is simply the very last element specified in the symbolic path. The
 ROOTONLY option is generally preferable, since it will result in
 faster system response.

 6. If the ECP cannot be found, or if the ECP is unable to perform the
 command either (and has Z33-compatible facilities for returning to the
 command processor), error processing is carried out using an external
 error handler, if one is installed, or internal error handling code in
 the command processor. The details of error processing are described
 elsewhere.

2.7.2. Flow State and Shell Stack-Generated Commands

There is one important exception to the rules described above. When the
specified command is running as a command processor-invoked shell command (not
one entered on the command line), special rules apply. The need for special
rules can be appreciated from the following example. Suppose that at the end
of a command line entered from a shell, the flow state is left in a false
condition. Then when the processor attempts to run the shell command from the
top of the shell stack, the shell command will be flushed. The command line
will again be empty, and the shell command will again be copied to the command
line. Again it would be flushed, and so on forever.

 -28-

ZCPR 3.3 User's Guide

Under Z33, there are two alternatives controlled by the SHELLIF equate in
Z33HDR.LIB. Setting this equate false gives the normally recommended behavior
as follows. First, if the current command is running as a shell and is itself
a flow command (this can happen if the shell command line has multiple
commands or contains an alias command), then it is simply flushed. Shell
command lines are not allowed to contain flow control commands (actually, it
can contain them, but they will not be processed). Second, if the command is
not a flow command, then it is run no matter what the current flow state is.
Thus the shell will run even if the current flow state is false. With SHELLIF
off, each command in a multiple-command shell will think it has been invoked
as a shell command. This makes it possible for the shell to be an extended
command process, such as when the shell is in COMMAND.LBR or is an ARUNZ
alias.

If SHELLIF is enabled (not recommended), then flow commands in a shell command
sequence ARE processed. In order for this to be done and make sense, two
other things have to be done. Since flow commands are recognized in the shell
sequence, entering in a false flow state would cause a problem. Consequently,
with SHELLIF on, the flow state is reinitialized each time a shell starts to
run. Thus all user command sequences with flow control must be completed on a
single command line (or virtual command line produced by ZEX or submit).
Since the flow state is reset for each command that thinks it was invoked as a
shell, multiple-command shell commands must be handled in a way that makes
only the first command think it is a shell. The other commands must think
that they are ordinary, user-invoked commands. Quite bizarre behavior can
result from this kind of processing; that is why we do not recommend using
this option. Some users have a special application for it, however.

2.8. Directory References and System Security

In this discussion we will use the term "directory" in the UNIX sense to refer
to a logical group of files. In the case of ZCPR3 this means a specific user
area (or user number) on a specific disk device.

Z33 has made extensive and significant changes in the way directories can be
referenced in commands and how security (if enabled) is handled. First we
will present some general background information and describe the situation as
it existed in Z30.

ZCPR3 supports two basic forms of directory reference, the disk/user or DU
form and the named directory or DIR form. We will assume that the reader is
already somewhat familiar with user areas and disk identifiers. The DU form
is native to CP/M, which knows about disk drives from 'A' to 'P' and user
numbers from 0 to 31 (though there are restrictions on user numbers above 15).
The drive part of the reference is a physical reference. Although the
association between letter names and physical devices can, in some systems, be
modified in software, all user numbers associated with a given drive are on
the same physical device.

Named directories, on the other hand, are purely logical constructs. The named
directory register (NDR) module in a ZCPR3 system, which is loaded by a user
command, contains a mapping of directory names to drive/user values. The user
can load different sets of directory associations at different times. When
the DIR form is used, the command processor looks for the name in the NDR and
substitutes the drive and user values. Only drive/user values are used in the

 -29-

ZCPR 3.3 User's Guide

actual file references, that is, in the file control blocks constructed by the
command processor.

Named directories provide two different and important functions, one is
convenience. It is much easier to remember that one's assembly-language tools
are in ASM and one's wordprocessing files in TEXT than it is to remember that
the directories are A1 and B31 You might have a floppy disk containing
letters to three friends: Bill, Bob, and Bud. You may have trouble
remembering which ones are in which of the user areas 1, 2, and 3, but you
will not forget which are in the named directories BILL, BOB, and BUD. Now
that there are some very powerful tools (e.g., LOADNDR) for automatically
setting up directory names in an adaptive way, named directories are quite
useful on floppy as well as hard-disk systems.

The second purpose of named directories is to provide security. When Z30 is
assembled, it is configured for maximum drive and user values. References to
directories outside that range are not accepted (they are interpreted as
references to the currently logged directory). This feature could not be used
conveniently to provide security, however, because it offered no flexibility.
The maximum drive and user values were hard-coded into the command processor
and could not be changed depending on the privilege level of the user.

2.8.1. Named Directory Passwords

Named directories offer a more flexible means of controlling access to areas
on a system. The user can access a named directory even if it refers to a
drive/user area that is beyond the normal bounds. Each directory name can
have an optional password associated with it. Whenever the command processor
parses a file specification with a passworded named directory, it will ask the
user for the password. If the correct password is given, then the
corresponding drive and user values will be used for the file reference. If
the password is entered incorrectly, then in Z30 the current drive and user
will be used, effectively denying access to the protected directory. In Z33
the error handler will be invoked so that the user can try again (in case he
mistyped the password) or abort the command or command line. Since the
contents of the named directory registers can be reloaded, very flexible
security can be achieved using named directories.

Note that named directories and password checking do have their limits. The
command processor normally parses only three tokens in a command: the command
itself and the first two tokens in the command tail. A directory reference
with the command name is used to determine in which directory to look for the
command. Directory references for the first two command-tail tokens
determine what drive and user values will be stored in the two default file
control blocks that the command processor builds for use by the program. If
there are additional directory references in other tokens, they will be
handled only by the program itself and, thus, may or may not be interpreted
correctly as named directories or have their passwords checked. Most ZCPR3-
compatible programs, but not all, which use additional command-line tokens do
take care of password security.

The command processor has many options concerning directory forms and
security. It can be configured to accept both DU and DIR forms, either one
alone, or neither. If it accepts both, it can attempt to recognize a
directory reference first as a named directory or first as a DU form. Here is

 -30-

ZCPR 3.3 User's Guide

an example of where the order makes a difference. Suppose you have a named
directory called 'C' associated with drive B, user 3 (perhaps you keep your C
language files there). If you are logged into A1 and use a file specification
of "C:PROG", it will refer to B3 if the DIR form is interpreted first or C1 if
the DU form is interpreted first.

2.8.2. Z33 Security Improvements Philosophy

Many improvements in Z33 have been introduced to deal with security issues.
However, this was not done, as one might think at first, to provide increased
security. Rather it was done to make it possible to have a secure system (a
remote access system for example) while maintaining the user-friendly
convenience associated with nonsecure ZCPR3 systems. We have always been
troubled by secure ZCPR3 systems because they give the impression that ZCPR3
makes a system difficult or complex to use, when, in fact, the very opposite
can, and should, be the case.
Here are some of the problems that used to exist with secure systems and the
way the problems have been solved in Z33.

2.8.3. DU References to Directories with Names

Named directories can be a pleasant optional convenience, but they quickly
become a burden when their use is made mandatory. The fact is that in many
(even most) cases, DU references are quicker and easier to type.
Unfortunately, because of Z30's fixed maximum drive and user limits, secure
implementations under Z30 were generally forced to disallow the DU form.

In Z33 this problem is dealt with in several ways. First of all, the command
processor can use for its maximum drive and user limits the values specified
in the system environment descriptor. It was ironic with Z30 that all the
utility programs used the environment module to get information about the
system, but the command processor had all the information hard-coded in (this
topic is dealt with more generally in the next section). With a Z33 secure
system, for example, the maximum user number can be set to 5 for normal users,
7 for certain privileged users, and 31 for the sysop. The limits are changed
simply by loading a new ENV file or by poking new values into the ENV module
in memory.

Even with the ability to change the maximum drive/user values, there are cases
where stricter limits are required. Suppose, for example, that you want users
to have access only to the areas B1 and C1. Clearly this cannot be done with
drive and user limits only. The drive limit would allow drive A to be
accessed, and the user limit would allow access to user 0. Whenever Z33 is
assembled with the code for recognizing the DU form, even if it is temporarily
disabled (more on that shortly), a DU expression that refers to a directory
that COULD be accessed using a DIR form is accepted. Thus, if in the above
example, B1 and C1 have the names LOWLY and GUEST, with no passwords, then the
expressions B1: and C1: will be accepted. The expressions BO: and Al:,
however, will not be accepted. If LOWLY and GUEST do have passwords but 1)
the wheel byte is on and 2) the WPASS option has been selected to bypass
password checking when the wheel byte is on, then the forms B1: and C1: will
be accepted despite the passwords.

 -31-

ZCPR 3.3 User's Guide

How can the code for DU references be present but temporarily disabled? Z33
can be configured to respond to the DUOK flag in the environment descriptor.
If this flag is turned on, normal parsing of DU expressions is performed.
Drives and users up to the maximum values, either specified in the environment
or hard-coded into the command processor, will be accepted in addition to
those allowed because of corresponding named directories. When the DUOK flag
is turned off, only those directories allowed because there is a corresponding
named directory will be accepted. This is ideal for maximum flexibility in a
secure system.

2.8.4. Unconditional Acceptance of Current Directory

There are several other annoying things that can happen in a secure system.
Suppose you have logged into directory PRIVATE (A3) using the password SECRET.
Consider an ARUNZ alias with the following script that allows the non-ZCPR3
program CPMPROG (renamed to CPMPROG0) to accept a named directory reference.
We assume that CPMPROG, like many modern CP/M programs, has been extended to
recognize the DU form. Here is the script:

 CPMPROG cpmprog0 $d1$u1:$:1.$.1

The complicated parameters in this example extract the drive ($d1), user
($u1), file name ($:1), and file type ($.1) from the first token. With this
alias, when you enter the command

 CPMPROG GUEST:NAME.TYP

ARUNZ turns it into the command line

 CPMPROG0 C1:NAME.TYP

This works very nicely. But now suppose you enter the command

 CPMPROG NAME.TYP

to refer to a file in the current directory. This turns into the command line

 CPMPROG0 A3:NAME.TYP

Unfortunately A3: is not an acceptable reference (it refers to a named
directory beyond the allowed ranges and with an active password). Note that
this directory reference (A3:) is to the directory that the user is currently
logged into. In this situation, Z33 has been enhanced to not prompt for
passwords since it can be assumed that being currently logged in to a given
passworded directory indicates the user should be allowed to remain there and
refer to it without further inconvenience. This is a significant improvement
over Z30. Hence this basic rule: In Z33 all references to the current
directory, whether using the DU or the DIR form, will always be accepted,
without restriction. If the reference uses the DIR form, the password will
not be requested again. Once you leave this directory, of course, full
security will be exercised if you attempt to return. Also, if the code for
processing DU forms is entirely omitted from the command processor by setting
the ACCPTDU option to false, then no DU references will be accepted under any
conditions.

 -32-

ZCPR 3.3 User's Guide

2.8.5. No Password Checking Under False If Conditions

Consider another alias that could give trouble in a secure system. This more
complex script prompts the user as to which of two protected directories he
wants to enter:

 script ENTER:

 IF INPUT ENTER PRIVATE DIRECTORY 1 (Y) OR 2 (N) ?
 CD PRIVATE1:
 ELSE
 CD PRIVATE2:
 FI

Under Z30, no matter how one answered the prompt from "if input", passwords
for both private directories would be requested. Even though the flow state
is false during the execution of one of the two 'CD' command lines, the line
must be parsed in case it turns out to be another flow control command. This
example is simple compared to some real-life experiences with Z30, which when
the user referred to a password-protected directory, would ask for the
password six times, even though only one command was actually going to be
executed. In Z33, the command processor is smart enough to skip checking
passwords when the current flow state is false. To make sure that the user
cannot finesse information from a private directory during false IF states,
the command processor does not just bypass password checking; it also
substitutes the current directory for the specified one. This is designed to
take care of the situation in which commands like the following are entered:

 IF FALSE ; Set a false IF state to bypass
 ; ..password checking
 OR EXIST PRIVATE:FN.FT Now see if the file exists in the
 ..private area while we will not
 ..be asked for the password
 IFQ Check resulting IF state
 FI End the process

The command processor will treat this command sequence as if it had been:

 IF FALSE
 OR EXIST FN.FT
 IFQ
 FI

Thus an OR command may not work when it refers to a password-protected
directory, and one should avoid ever using the OR command with such
references. Put still another way, the following sequence is not reliable:

 IF EXIST PRIVATE1:FN.FT
 OR EXIST PRIVATE2:FN.FT

For the first test, one will be asked for the password. If that test is
false, then one will not be asked for the password to the PRIVATE2 directory,
and the current directory will be searched for FN.FT. This problem can be
avoided in most cases by using the De Morgan boolean equivalent command pair
based on AND instead of OR:

 -33-

ZCPR 3.3 User's Guide

 IF ~EXIST PRIVATE1:FN.FT
 AND ~EXIST PRIVATE2:FN.FT
 ELSE

Here, if the first test is false, the outcome of the second test is irrelevant
anyway, so it is just as well that the command processor not pester us for the
password to directory PRIVATE2.

2.8.6. Special Options for Directory References

There are several special options in Z33 for handling directory references.
We mentioned WPASS above. This option allows all password checking to be
suspended when the wheel byte is on. With the WDU option enabled, changing
directories using commands like "DU:<cr>" or "DIR:<cr>" will not be allowed
when the wheel byte is off. With WPREFIX enabled, explicit directory prefixes
on commands (e.g., "B2:PROGNAME" or "MYDIR:PROGNAME" or even ":PROGNAME") will
be ignored when the wheel byte is off; the commands will be searched for only
along the path, just as if no prefix had been present. This option can be
used to prevent a user from running a COM file that happened to find its way
into a directory where it did not belong. Finally, the PWNOECHO option allows
one to prevent the password from appearing on the screen as it is entered.
This is done by temporarily patching the BIOS console output routine (the jump
opcode is changed to a return). When the password entry has been completed
(and also at each warmboot, just in case anything went wrong along the way),
the BIOS is patched back to normal.

2.8.7. Passing Illegal Directory References to an ECP

There is a special option (BADDUECP) that determines how the command processor
will deal with attempts to log into a non-existent or off-limits directory.
If BADDUECP is off, the command will be treated as an error and sent
immediately to the error handler. If BADDUECP is on, then the command is sent
instead to the extended command processor. If ARUNZ is the ECP, the following
alias script is very handy for dealing with this situation. The alias name is

 ?:=??:=???:=????:=?????:=??????:=???????:=????????:

This alias is placed at the end of ALIAS.CMD. It recognizes any command with
from 1 to 8 characters followed by a colon (i.e., any DU: or DIR: command).
The command script associated with this alias name is

 ECHO d%>irectory %<$0%> is not a valid directory. %<t%>he following
 ECHO %>directories are available:
 ECHO
 PWD

If the user enters a command such as "BADDIR:<cr>", then the following message
is displayed in front of the PWD listing of the directories on the system.

 Directory BADDIR: is not a valid directory. The following
 directories are available:

 -34-

ZCPR 3.3 User's Guide

On a remote access system, this is more useful than having the error handler
invoked, since it gives the user the information he needs to enter a correct
command.

2.9. Command Processor Response to the Environment Descriptor

When ZCPR3 was introduced, one of its most striking concepts was the use of
the environment descriptor to provide a unified description of the system to
all of its components. How strange, then, that the command processor, the
heart of the system, did not use the environment descriptor for its
configuration information! With Z33 this has been changed to a significant
extent.

It is probably not feasible, because of the additional code it would require,
for the command processor to get all of the information it needs from the
environment descriptor. In the CPR there are numerous references to the
multiple command line buffer, message buffer, path, external file control
block, external stack, wheel byte, shell stack, named directory register, flow
control package, and resident command package. Computing the required
addresses each time they are needed would be far too cumbersome.

Z33 has tried to reach a compromise solution, making the command processor
responsive to some but not all information in the environment descriptor.
This information is of two types -- system characteristics and module
addresses.

2.9.1. Equates Controlling Command Processor ENV Access

There are several system characteristics defined in the environment descriptor
that the command processor should be able to respond to. Because extra code
is required to implement these features and not all users will require them,
they are all optional and controlled by equates in the Z33HDR.LIB file. The
DUENV (DU from ENV) option allows the command processor to determine from the
environment the highest drive and user number to be recognized. The ADUENV
(Allow-DU from ENV) option makes the command processor's acceptance of the DU
form follow the status of the DUOK flag in the environment. If this flag is
set, the DU form will be recognized; if it is not set, then only named
directory references will be accepted. Since even with DU processing disabled
by the DUOK flag, the command processor can still recognize DU expressions if
they refer to directories with names, one may or may not want the prompt to
show the DU value when DUOK is off. The INCLENV (INCLude in prompt from ENV)
option makes the display of the drive/user in the command prompt dependent on
the DUOK flag also.

It is impractical to have the command processor get the addresses for ALL
system modules from the environment descriptor. We have assumed a 'min'
system configuration with a multiple command line buffer, message buffer,
shell stack, path, external stack, and external file control block in addition
to the environment descriptor itself. A wheel byte is assumed if any option
requiring a wheel byte is enabled. These system modules must be located at
addresses fixed at the time the command processor is assembled. Other than
the decision to include or omit these modules, no other options were generally
considered under Z30. Although for some, like the shell stack, the size could
be specified, the standard configuration was almost always used.

 -35-

ZCPR 3.3 User's Guide

2.9.2. Dynamic Sizing of FCP/RCP/NDR

With the Z33 command processor, the locations of the three largest system
modules -- the RCP (resident command package), FCP (flow command package), and
NDR (named directory register) -- can be determined from the environment. If
the system is configured with these three modules contiguously located, then
the total buffer space they occupy can be traded off on a dynamic basis.
There might, for example, be a total of 24 records or 3K bytes allocated for
the three modules. Under one set of circumstances, the RCP might get 17, the
FCP 5, and the NDR 2 sectors. This allows one to have extensive RCP and FCP
commands but only 14 directory names. At another time, one might want to
change the balance to 16, 4, and 4 sectors for the three modules,
respectively. Now there could be 28 directory names but fewer RCP and FCP
commands. By setting the address of a module to zero in the ENV, the
corresponding feature in the command processor can be disabled.

If you decide to make use of this capability, great care must be exercised,
since the command processor accesses these modules for each command it
processes. Consequently, the changes cannot be made piecemeal. If you were to
load only a new environment descriptor, and it contained a different address
for the flow command package, the system might well crash when it tries to
interpret whatever code is at this new address as an FCP module. It is
generally best to make all the changes in a single command, such as the
following:

 LDR NEW.ENV,NEW.NDR,NEW.FCP,NEW.RCP

This command loads the new environment first. Then, with that established, it
can proceed to load all the other new modules. It is safest to put commands
like this into aliases so that no mistakes can occur (such as mistyping the
name of one of the modules in the above command). You might have a general-
purpose alias called SETENV that would be invoked with a number to select the
environment configuration. Here are some examples.

 SETENV 1
 SETENV 2

Part of the script for that alias would be the following:

 IF EXIST SYS$1.ENV
 LDR SYS$1.ENV,SYS$1.NDR,SYS$1.FCP,SYS$1.RCP
 ECHO ENV $1 ESTABLISHED
 ELSE
 ECHO ENV $1 NOT FOUND
 FI

A few extra commands would be required to make sure that it referred to the
correct directory areas for the files.

 -36-

 3. COMMAND-PROCESSOR-RESIDENT COMMANDS

In Z33 the resident commands are considered to be secondary elements to be
included only to the extent that space remains after the essential command
processing features have been implemented. Command processing functions can
be performed only by the command processor; the utility functions can be
performed in other ways. In the forthcoming companion resident command
package. Z33RCP, all of these commands except for GET, GO, and JUMP will be
available.

3.1. Overview

In all there are ten resident commands in the command processor: DIR, ERA,
GET, GO, JUMP, LIST, NOTE, REN, SAVE, and TYPE. They can be divided into two
classes according to the extent to which they make use of command processing
code to carry out their functions.

Three of the resident commands -- GET, GO, and JUMP -- are intimately tied
into the command processor code, and they should be the first commands chosen
for inclusion if their functions are desired.

Implementing GET in an RCP would involve extensive duplicate coding, since GET
utilizes all of the command processor code related to the execution of
transient programs except for the final call to the loaded code. This
includes determination of the load address, building the search path,
searching for the file, and loading the file to the specified address.

GO and JUMP, on the other hand, make use of the one part of the command
processor code that GET does not use -- the code for executing a loaded
program. This includes automatic installation of the loaded code. The JUMP
command also makes critical use of the command processor's parser to reparse
the command tail omitting the load address. With the new defined entry point
into the command processor's parsing code, it is now possible to implement the
JUMP command in the RCP without a great penalty in code. Nevertheless, GET,
GO, and JUMP together require only a little more than 60 bytes of additional
code plus 18 bytes for their entries in the command dispatch table, so it does
not cost very much to include them.

The remaining commands -- DIR, ERA, LIST, NOTE, REN, SAVE, and TYPE -- are
largely independent program functions stuck into the command processor.
Formerly, including them in the command processor offered two advantages:
first, they responded faster because they did not have to be loaded, and,
second, they did not use memory in the TPA. The latter factor was convenient
because it made it possible to rerun the previously loaded transient command
using GO even after using one of the resident functions had been run. Not
using the TPA was critical for the SAVE command, whose function of copying the
memory image in the TPA to a file could not be performed by a program which,
itself, had to be loaded into the TPA.

 -37-

ZCPR 3.3 User's Guide

All of these commands can be performed equally well, however, as resident
commands in an RCP, where the greater amount of available memory can be used
to give the commands more power and flexibility. The new type-3 environment,
furthermore, makes it possible to have transient versions which, though taking
time to load, will not interfere with low TPA memory. One can even have a
SAVE.COM now. Consequently, these functions should be included in the command
processor only if space remains after all desired command processing options
have been implemented.

We will now discuss the changes that have been made in the way these resident
commands function under Z33. For overall descriptions of the commands, the
reader should consult Richard Conn's ZCPR3: The Manual. The NOTE command is
not discussed below, since it has not changed at all.

3.2. DIR

The DIR command always supplied an automatic file specification of "*.*" when
the command was used without any tail. However, if the user wanted to include
files with the SYS attribute or to see only those files, the commands had to
be entered as "DIR *.* A" or "DIR *.* S". If the SLASHFL option is enabled in
the Z33HDR.LIB file, then the following commands will accomplish the same
functions: "DIR /A" and "DIR /S".
There is now an optional wheel restriction on the display of files with the
SYS attribute. If WHLDIR is enabled, the 'A' and 'S' options will be ignored
when the wheel byte is off.

3.3. ERA

The file erasing command is essentially identical to the one in Z30. There
is, however, greater flexibility in the choice of the character that invokes
the inspection/verification option. Z30 used 'IV', but the transients (e.g.,
ERASE, RENAME, MCOPY) and the RCP version of ERA all use 'I'. With the
default setting of INSPCH to ' ' (space character) in the Z33HDR.LIB file, any
character at all ('I' or 'V' or anything else) in the second command line
token will enable prompting. If you prefer a specific character, change the
setting of INSPCH to the uppercase character or symbol of your choice.
A second change is that ZEX input redirection is turned off during the
operation of all resident commands so that the inspection/verification prompt
will not be answered by characters in the ZEX script.

3.4. GET

The GET command loads a file or transient program in exactly the same way that
it would be for execution except that it is loaded to the address specified by
the user, no matter what address it would be loaded to otherwise. The syntax
is:

 GET HEXADDR UNAMBIGFN

 -38-

ZCPR 3.3 User's Guide

Here are some examples:

 GET 100 UTILITY.COM
 GET 1A35 FIX:PATCH.OVR
 GET A00 3:SYS.RCP
 GET 180 :LOCAL.FIL

Note that ZCPR3: The Manual contained an error in the description of the GET
command. The address is the full hexadecimal address and NOT the page
address. Do not use an 'H' after the address. Files can be loaded to any
address, not just a page boundary, and, of course, GET will load files of any
type, not just COM files.

Normal path searching is employed to locate the file. Thus if the SCANCUR
option is off and the path does not explicitly include the current directory,
the file will not be loaded from the current directory unless a colon is
placed before the file name. Explicit directories can always be named using
either the DU or DIR forms.

3.4.1. GET and Memory Protection

The GET command can have memory protection enabled or disabled depending on
the setting of the FULLGET option in Z33HDR.LIB. If protection is enabled
(FULLGET off), loading over any part of the operating system, including
resident system extensions below the command processor or page zero of memory,
will be prevented, and the error handler will be invoked. For an attempt to
load to page zero of memory, the error will be a bad-number error; for an
attempt to load above the top of the TPA, the error will be a TPA-overflow
error. If memory protection is disabled, a file can be loaded to any address
whatever, even if that results in destruction of the operating system.
Sophisticated users will probably prefer to have this additional power and
will accept the responsibility that comes with it.

If the address expression is not valid (not a number, for example), if the
specified file is ambiguous (contains wild card characters), or if the
specified file cannot be found along the search path, error handling is
engaged so that the user can correct or abort the command as he wishes.

3.5. GO

The GO command has not changed at all. However, to avoid any possible
confusion, we will state explicitly here that GO always calls (runs) the code
at address 100H, even if the most recently loaded transient program had a
type-3 environment and was loaded at an address other than 100H. Thus GO re-
executes the most recently loaded type-1, type-2, or conventional CP/M
transient program. It is equivalent to the command "JUMP 100".

 -39-

ZCPR 3.3 User's Guide

3.6. JUMP

The JUMP command in Z33 has been enhanced to provide the full functionality of
the GO command but with the additional capability of specifying the address to
call. In Z30, JUMP could not be used with parameters in the command tail,
because the first parameter was always the address number. With the Z33 JUMP
command, after the address is evaluated, the command tail is reparsed
beginning with the token after the address. Thus the command

 JUMP 100 TOKEN1 TOKEN2 REST-OF-COMMAND-TAIL

functions identically to the command

 GO TOKEN1 TOKEN2 REST-OF-COMMAND-TAIL

JUMP can be used to extend Bruce Morgen's POKE&GO technique to files with a
type-3 environment. Suppose a program called MYPROG has been linked with a
type-3 environment for execution at address 4000H and that we wish to execute
"MYPROG SOURCE DESTINATION" after changing a configuration byte at offset ODH
in the file to 0FFH. We can use the following command sequence:

 GET 4000 MYPROG.COM
 POKE 400D FF
 JUMP 4000 SOURCE DESTINATION

This could be automated, for example, using an alias called perhaps MYPROG1
with the following script:

 GET 4000 MYPROG.COM
 POKE 400D FF
 JUMP 4000 $*

One could then simply issue the command MYPROG1 SOURCE DESTINATION.

3.6.1. A Possible Rare Problem with JUMP, SAVE, and the ECP

There is one less than ideal aspect to the JUMP command that could cause a
problem in rare instances, and we want to explain the problem here so that you
will not be surprised if it ever happens to you. Suppose we enter the
following command sequence to run our type-3 directory-display program DIR
first on one directory and then on a second password-protected directory:

 DIR PUBLIC:*.COM
 JUMP 8000 PRIVATE:*.COM

When the JUMP command executes, we will be asked for the password to the
PRIVATE directory TWICE. During the first parse, the tokens '8000" and
'PRIVATE:*.COM" will be parsed. When the line is reparsed with the pointer at
the second token, the tokens "PRIVATE:*.COM" and "" (null token) will be
parsed. Since 'PRIVATE:' appears again, the code will ask for the password
again. Since the code to deal with this would probably be somewhat lengthy,
since the situation will arise rarely enough, and since it is a problem that
one can live with, we have left it this way.

 -40-

ZCPR 3.3 User's Guide

This same problem can occur with the SAVE command for the same reason. It can
also occur with extended command processing for a similar reason. When
extended command processing (using the ECP) is initiated, the command line is
reparsed using the command as the first token of the tail and the first token
as the second token. If the formerly first token contains a reference to a
passworded directory, then you are asked for the password a second time.

3.7. REN

The REN command normally functions just as it did in Z30. However, improved
error handling has been provided, and one serious defect has been corrected.
Consider the command line

 REN PROG.COM=NEWPROG.COM

Suppose that PROG.COM already exists and that NEWPROG.COM, unexpectedly, does
not. In Z30 one would first be prompted for deletion of PROG.COM. Only after
it had been deleted would one be told that NEWPROG.COM was not found! In Z33,
the check for the existence of the source file is performed first.

If either the source or destination file expression is ambiguous (wildcards)
or if the source file does not exist, error handling is engaged so that the
user can correct the command or abort it as desired. If the destination file
already exists, the user will be prompted for its deletion. Since ZEX input
redirection is disabled for all resident commands, the user will be able to
supply the answer to the prompt. The console bell will ring at this
unexpected prompt (unless the BELLFL option is set off).

3.8. SAVE

The Z33 SAVE command finally operates as described in ZCPR3: The Manual. The
'S' option described there never existed before. Here are some example
commands:

 SAVE 15 FILE1.TYP Saves 15 decimal pages (30 records of 128
 bytes each) to FILEl.TYP
 SAVE 15H FILE2.TYP Saves 15 hex - 21 decimal pages (42 records)
 to FILE2.TYP
 SAVE 15 FILE3.TYP S Save 15 decimal records (7.5 pages) to
 FILE3.TYP
 SAVE 15H FILE4.TYP S Saves 15 hex - 21 decimal records (10.5 pages)
 to FILE4.TYP

If the number expression is invalid (not a number at all, not a proper number
in that radix, or too large a number), if the file specification is ambiguous,
or if the disk or disk directory becomes full, error handling is engaged so
that the user can attempt to recover or can abort the command as desired.

If the designated file already exists, the user is prompted for its deletion.
ZEX input redirection is turned off during the prompt so that the user will be
able to supply the answer. The bell will ring at this unexpected prompt
(unless the BELLFL option is set off).

The character used for the sector option ('S' above) is configurable in
Z33HDR.LIB using the SECTCH equate. As with the ERA command, if this

 -41-

ZCPR 3.3 User's Guide

character is set to ' ' (space character), then any character at all in the
third token (for example, 'R' for record as well as 'S' for sector) will
invoke the sector option.

3.9. TYPE/LIST

These commands generally function as before. However, if the file name is
ambiguous or if the specified file does not exist, then error handling is
engaged, allowing the user to correct or abort the command as desired.

The paging toggle character, as with the ERA and SAVE commands, can be set to
' ' (space character) to allow the presence of any option character to toggle
the paging mode.

The number of lines to use per page is taken from the data in the environment.
Since the code required to determine which CRT is in effect is lengthy, the
TYPE command in Z33 simply uses the number of text lines specified for CRT0.
This costs only four bytes over using the fixed value that was used in Z30.
We envision elimination in the future of multiple CRT and printer definitions
in the environment. Instead of selecting among the two CRTs and four
printers, a future utility could simply load data into single definitions for
each device. This would free up space in the environment for other
information and would give the user unlimited flexibility in defining the
devices.

 -42-

 4. INSTALLATION

In this section we will describe the procedures used to install Z33 in a
system currently running a version of Z30. As you will see, the procedure is
only slightly technical and not actually difficult. However, with the large
variety of computer systems around, procedures can vary widely, and we will
not be able to give a prescription that will work in all cases.

4.1. Types of Existing Installations

We will distinguish two major types of ZCPR3 systems in use -- manually
installed and automatically installed systems. The procedures for converting
to Z33 are quite different in principle, though less so in practice. The
original method for implementing ZCPR3 required that the user relocate the
BIOS and BDOS (or ZRDOS) components of the operating system lower in memory to
make room above the BIOS for the buffers required by ZCPR3. Late in 1984
Echelon introduced the first of its ingenious auto-install versions. It was
called Z3-Dot-Com because the computer's standard CP/M was converted instantly
to a ZCPR3 system simply by executing a file called Z3.COM. In January, 1985,
a more advanced auto-install version, called Z-Com, was introduced. it
included ZRDOS, the new Echelon replacement for the BDOS disk operating
system, and it supported IOPs (input/output packages). Although Z3-Dot-Com
was superseded by Z-Com and is no longer actively sold, many existing systems
utilize it.

4.2. Installation Methodology

There are four basic steps to the installation process: 1) gathering the
necessary files; 2) selecting the options desired; 3) assembling the new
command processor module; and 4) installing the new command processor into the
system. We will now discuss each of these steps. Only the last one is
different for auto-install and manual install versions.

4.3. Collecting the Files

Collecting the files is rather straightforward, since all but one of the files
needed should have been received in one package. The standard distribution
Z33 system includes, among others, the following files:

 ZCPR33.Z80 The main command processor source code
 Z33MAC.LIB Macro definitions for ZCPR33
 Z33HDR.LIB Configuration file

The one additional file that you must supply is Z3BASE.LIB, the file that
describes the memory allocation in your system. If your present version of
ZCPR3 was manually installed, you should already have this file. If not, you
will have to create one. A complete discussion of that subject is beyond the
scope of this guide, and you should consult ZCPR3: The Manual for further
information. We can offer the following hints, however. If you run the
utilities SHOW and Z3LOC, between them they will reveal all of the data you

 -43-

ZCPR 3.3 User's Guide

need. Take a generic version of Z3BASE.LIB from the original Z30 release and
edit it to reflect the addresses appropriate for your system.

If you are using an auto-install version, there is a generic Z3BASE.LIB file
that comes with the package. There are two changes that have to be made.
First you have to determine the address of your environment descriptor. This
can be done in several ways. You can run the SHOW command or the Z3LOC
command with the 'Z' option. Alternatively, you can load an installed ZCPR3
program into memory using "GET 100 PROGRAM.COM" and then peek at addresses
109H and 10AH to get the environment address. You have to put this value into
the Z3ENV equate at the beginning of the Z3BASE.LIB file (also, if the symbol
Z3ENV is defined with a SET directive, 'SET' should be changed to 'EQU' or
'DEFL' to be acceptable to a Zilog-mnemonic assembler).

The second change is required to correct an oversight in the distributed file.
You must add a line to define the address of the CCP. This line, which can be
placed right after the Z3ENV equate, should read

 ccp equ z3env - 1a00h

Your Z3BASE.LIB file should now be ready for use.

4.4. Choosing the Options

Now you have to edit the Z33HDR.LIB file to select the features to include in
your personal implementation of Z33. There being so many options to choose
among, this may well be the hardest step of all. Because the command
processor is limited in size to no more than 2K (2048) bytes, not all features
can be included. Elsewhere in this manual and, to some extent, in the
Z33HDR.LIB file itself, we have given overall guidelines to follow in
selecting features. One of these is to begin by choosing the command
processing options and only then to add resident commands as space permits
(that's why we put the resident command equates at the top of the HDR file).
The section on resident commands makes suggestions as to which commands should
be chosen first for inclusion. If, as we are sure many will be, you are too
impatient to read the other sections of this guide carefully before trying to
install Z33, extensive comments have been included in Z33HDR.LIB to make it to
a high degree self-explanatory.

The main consideration that will affect your choices is whether the system is
to be open or secure. The distribution Z33 package includes several example
Z33HDR.LIB files, some for open systems and some for secure systems. If your
system will run in secure mode some of the time and open mode at other times,
we recommend using one of the secure versions with the options for setting
aside security when the wheel byte is set.

4.5. Assembling the Command Processor

Once the files have been collected and Z33HDR.LIB has been edited, the next
step is to assemble ZCPR33.Z80. The Z33 source files have been prepared
specifically for Echelon's ZAS assembler, and we will first describe how to
use ZAS to produce the required object file. Later we will have a few words
to say about assembling ZCPR33 with other assemblers.

 -44-

ZCPR 3.3 User's Guide

ZCPR33.Z80 can be assembled to either of two types of object file: absolute or
relocatable. In an absolute file, either of type HEX or COM, all of the
addresses have been defined and coded in. With a relocatable file, with file
type REL, the address at which the file will run has not yet been coded in.
Instead, the file includes additional information that allows it to be
converted during a subsequent linkage step to run at whatever address is later
specified.

4.5.1. Assembling Z33 with ZAS

From our experience, installation of the command processor on most computers
can be accomplished using an absolute object file. Some systems, however, use
a relocatable (REL) object file. You may have to read ahead in the next
section to know which type of file will be required for your system. If you
have a choice, our recommendation is that you use an absolute COM file. With
Echelon's ZAS assembler in its normal configuration (default output file in
REL-format), the following command line will generate a relocatable output
file named ZCPR33.REL:

ZAS ZCPR33

If you are going to generate relocatable output, the REL equate at the
beginning of Z33HDR.LIB must be set to true, otherwise the file will include
an expression that is not a valid relocatable item, and it will include an ORG
statement with a specific address for the code. This is contradictory to the
nature of a relocatable file.

To generate an absolute file named ZCPR33.HEX, use the 'H' switch on the
command line as follows:

 ZAS ZCPR33 H

If you are going to generate absolute output, the REL equate at the beginning
of Z33HDR.LIB MUST be set to false. Otherwise there will be no ORG statement
included in the code to specify the starting address, and the output file will
be for a command processor running at the beginning of the TPA.

If you have chosen the options in Z33HDR.LIB properly, the file will assemble
without errors to either type of file. Unfortunately, if the code is too
long, you will get an assembly error message and will have to disable some
options. If it is significantly smaller than 2048 bytes (for absolute files
you will learn this later, as explained below), then you can try adding some
more options. The Z33HDR.LIB file should be adjusted until you have a system
that 1) has the features you want and 2) fits within the 2K allocation.

If you are vorking with an absolute file, you should now convert the HEX file
to a COM file using MLOAD and the following command line:

 MLOAD ZCPR33

Don't be surprised when the console bell beeps and you get the following
warning message:

 ++ Warning: program origin is NOT at 100H ++

 -45-

ZCPR 3.3 User's Guide

This message is expected, since the origin is at the address of the command
processor. MLOAD will also give you valuable additional information,
including the number of bytes loaded in both decimal and hex notation (do not
confuse this with the number of bytes written to the output file, which will
be rounded up to the next whole record). At this point you can determine if
there is likely to be room for more options. One other warning is in order.
Although ZCPR33.COM is a COM file, you cannot run it; it is almost guaranteed
to crash your system if you try. If this makes you too nervous, you can
rename it to something else like ZCPR33.BIN (binary image file). Just be sure
to use the proper name in the instructions below.

4.5.2. Assembling Z33 with Other Assemblers

Before we go on to the next step in the installation, let us touch briefly on
the question of other assemblers.
The only other assemblers that are known to assemble ZCPR33.Z80 in its
distributed form with no modifications (other than Echelon's ZAS) are the SLR
assemblers (Z80ASM, SLR180, or the virtual versions of them). With these
assemblers, you should choose the option to generate the ZCPR33.COM file
directly.

Any assembler that can process the Zilog mnemonics used in the source code and
has a macro capability can probably be used, with more or less editing of the
Z33 source code. One item likely to cause errors is the use of the square
brackets ("[" and "]") required by ZAS instead of parentheses as used by other
assemblers. So if you want to use another assembler, you will have to edit
the source files (ZCPR33.Z80, Z33MAC.LIB, and Z33HDR.LIB) and replace square
brackets by parentheses. This can easily be done with standard search-and-
replace operations available in most editors. Also, a potential subtle
problem is the usage of more than six characters in labels, particularly with
the M80 assembler. Latest versions of M80 can handle long labels in the main
code but not in macros, and the dummy parameters used in the macros in
Z33MAC.LIB have to be shortened. One other change is required with M80: the
MACLIB lines in ZCPR33.Z80 must be made uppercase. It is possible that other
changes would be required if the assembler does not support the full set of
opcodes, conditional expressions, and macro constructs. Use any error
messages generated as a clue.

It is worth noting that it would be a very time-consuming task to attempt to
adapt the Z33 source to a non-macro or 8080-mnemonic assembler such as ASM,
MAC, etc. However, if you have no choice, good luck!

4.6. Installing the Command Processor into the System

We now turn to the final step -- installing the new command processor module
into the operating system image. One thing you should definitely do now
before you proceed any further (if you have not already had the prudence and
good sense to do it) is make a new system disk to experiment with. Do not try
to install the new system on your only complete copy of your current system!
Duplicate the disk, and perform your experiments on the copy.

Manually installed ZCPR3 systems may require any of a number of possible
installation procedures. Before we plunge into that complex subject, we will
first describe the procedure used with the auto-install packages. Many users

 -46-

ZCPR 3.3 User's Guide

of Z-Com have expressed concern that Z33 would not be installable in their
systems. On the contrary, it can be installed, and the procedure is extremely
easy.

4.6.1. Installation in Z-Com and Z3-Dot-Com Systems

An auto-install system has one very significant advantage over a manual in-
stall system -- the new command processor can be tested without even instal-
ling it! The auto-install versions of ZCPR3 do not load the command processor
from the system tracks of the disk. Instead, the command processor is kept in
a file. If you look in directory A15 you will find it. In the case of Z-Com,
the file is called ZC.CP (Z-Com Command Processor); for Z3-Dot-Com it is
called Z3.SYS (Z3.COM System). To test your new Z33 command processor, all
you have to do is rename ZC.CP or Z3.SYS to some other name (in case you want
it back later) and copy the ZCPR33.COM that MLOAD produced to directory A15
under the name ZC.CP or Z3.SYS. Then warmboot the system with a control-C,
and, presto, the new command processor is running. You can now experiment
with it and determine whether or not you are satisfied with the features you
selected.

Once you have a command processor with which you are satisfied, only one
additional simple step is required to make the auto-install system 'boot up'
immediately with the new command processor (before, it only appeared after the
first warmboot). When the Z-Com or Z3-Dot-Com system is booted by entering
the commands 'ZC' or 'Z3', respectively, the command processor is loaded from
ZC.COM or Z3.COM, where it resides beginning at address 200H. The simplest way
to patch in the new command processor is with the following command sequences
(you could make an alias to automate this):

 For Z-Com:
 GET 100 ZC.COM Load ZC.COM into the TPA
 GET 200 A15:ZC.CP Overlay the new CPR
 SAVE 45 ZCNEW.COM Save the new version

 For Z3-Dot-Com:
 GET 100 Z3.COM Load Z3.COM into the TPA
 GET 200 A15:Z3.SYS Overlay the new CPR
 SAVE 39 Z3NEW.COM Save the new version

To test the new versions, return to standard CP/M using the exit command
('ZCX' or 'Z3X') and then reinvoke ZCPR3 using the new loader. If it works,
you can rename the file.

4.6.2. Installation into a Manual Install System

There are so many different ways in which operating system images are built
and installed with different computers that we cannot possibly cover them all.
Instead, we will try to describe two approaches that have fairly wide
applicability. Both work from an absolute form of the command processor in a
file called ZCPR33.COM. The installation methods based on relocatable system
files are too machine-specific to cover here. You will have to follow the
instructions that come with your computer or operating system.

 -47-

ZCPR 3.3 User's Guide

4.6.2.1. Installation Using Disk Utility (DU3)

We will begin with a technique which we have not seen described before, though
it is fairly obvious. If your system allows you to carry out these
operations, this procedure is rather easy once you understand it, and it
avoids a number of problems that can arise with more conventional installation
techniques.

This procedure uses the disk utility program DU3. If you do not have a copy,
get one. Put ZCPR33.COM in A0 and log into that directory. Invoke DU3, and
use the following sequence of commands at the DU3 prompt:

 T0 ; Select track 0 (first system track)
 S1 ; Select sector 1 (first sector on track)
 D ; Display its contents on the screen

In almost all cases this sector contains code called the boot loader. What
you have to do now is locate the command processor on the system tracks.
Advance from sector to sector using the command

 +D ; Go to next sector and display

until you see the Z30 command processor code. How do you recognize it? Two
things will give it away. First of all, it begins with exactly two (and no
more) identical jump instructions: C3 xx yy C3 xx yy. Secondly, in the text
part of the display on the right, you will see the names of the resident
commands, such as SAVE, GET, GO, and so on. Once you have found it, make note
of the sector number; you will need it later.

Just for reference, here are the locations of the command processor on the
system tracks of several popular computers for which this installation
technique works. Do not take these values on faith -- check them. It is
always possible that your machine will be different from the one used to
ascertain this information.

 Ampro and SB180 T0,S2
 Televideo 803 T0,S3
 Kaypro (normal) T0,S2
 Kaypro (TurboROM) T0,S5
 Morrow MD3 T0,S9

The next step is to load the new command processor image into what is called
the queue. First you have to find the file. DU3 has the 'F' command
especially for this purpose. Enter

 FZCPR33.COM Find file ZCPR33.COM

The display will be something like

 DU3 A0? FZCPR33.COM
 60 005A4350 52333320 20434F4D 00000010 |.ZCPR33 COM ...|
 70 3A000000 00000000 00000000 00000000 |...............|

By looking at the number at the lower left, you learn which disk group the
file ZCPR33.COM is stored in. In our example it is group 3A (hex).

 -48-

ZCPR 3.3 User's Guide
There can be some complications at this point. If you find the following
discussion too confusing, either use a different installation method, or ask
someone (your local Z-Node sysop, for example) for help. The example above
assumed that your disk had a group size of 2K or more. If your disk is a
single-density floppy that uses 1K groups, there will be two numbers (e.g., 3A
and 3C) instead of one. You will have to remember both of them. On the other
hand, if you have very large disks containing many groups, it may take a word
rather than a byte to contain the group number. For example, you might see a
sequence like 3A 01. In this case the group number is 13A. If you are not
sure which one it is, the steps described in the next paragraph will help
confirm any guess you have to make.

Once you have determined the group number, go to that group and display its
contents using the DU3 command sequence

 Ggg ; Go to the group (gg=3A in above example)
 D ; Display the contents

You should notice a strong resemblance between this display and the one you
saw before when you located the command processor on the system track.
Assuming you see something that looks like a command processor, you will now
capture it in DU3's queue. Here is the command line to enter (it must be all
one command, unlike the command sequences above that could be entered either
singly or as a multiple command line using comma separators).

 <B,+,*16

Here is what each part of the command does:

 <B ; Copy the disk data buffer into the queue
 + ; Advance to the next record
 *16 ; Repeat this command sequence 16 times

This command copies 16 records or 2K bytes into the queue.
If your disks have 1K groups and you recorded two group numbers earlier, you
would copy the file in two pieces into the buffer. The commands would be

 Ggg1 ; Go to first group
 <B,+,*8 ; Get first 8 records
 Ggg2 ; Go to second group
 <B,+,*8 ; Get the second 8 records

where gg1 and gg2 are the two group numbers (3A and 3C, for example).

Now that you have the command processor in the DU3 queue, all you have to do
is load it into place in the system track. To do this, first return to the
sector you identified earlier:

 T0 ; Track 0
 Sss ; Go to sector determined earlier
 D ; Display it (just to make sure)
 >B,W,+,*16; Copy queue onto disk

 -49-

ZCPR 3.3 User's Guide

The last command, which again must be all on one line, accomplishes the
following: >B ; Copy one record from queue to buffer
 W ; Write the buffer to disk
 + ; Advance to the next disk record
 *16 ; Repeat for 16 records

Now enter a control-C to warmboot out of DU3. The new command processor is
installed and running!

4.6.2.2. Installation Using a SYSGEN Image

The most common system installation technique provided by the manufacturers of
computers uses a program called SYSGEN (system generator) or something
similar, such as TurboGen in the case of the Kaypro TurboROM system. We will
suggest two possible ways to proceed if your computer uses this system. In
both cases, you should have the ZCPR33.COM file in the currently logged in
directory.

4.6.2.3. The Simpler SYSGEN Technique

The simpler of the two SYSGEN techniques proceeds according to the following
four steps.

 1. Run the SYSGEN program. When asked for the source drive, enter A
 followed by carriage returns. When asked for the destination drive,
 do not answer with any drive letter. Just hit a carriage return to
 exit from SYSGEN. The system image for the operating system stored on
 the system tracks of the A disk is now in memory.

 2. Use the 'P' (peek) command to find the beginning of the command
 processor code in the image. If your screen is not too fast, you
 might try entering the peek command as

 P 800 4000

We have never seen a SYSGEN that puts the command processor at an
address less than 800H. The command processor always begins on a
sector boundary - the beginning address will always be xx80 or xx00.
You want to try to recognize the first record of the CPR. The most
easily recognized data structures are the names of the resident
commands. The most common location for the CPR is 980H. Here are the
values we found for several popular computers:

 Ampro, SB180 980H
 Kaypro (standard) 980H
 Kaypro (TurboROM) B00H
 Morrow MD3 D00H
 Televideo 803 980H

Again, do not take our word for it -- check the value yourself. It is
always possible that your system has a different version of SYSGEN.

 -50-

ZCPR 3.3 User’s Guide

 3. Now you have to install the new command processor into the system
 image. This is quite easy with the GET command:

 GET aaa ZCPR33.COM

 where 'aaa' is the hexadecimal address you determined in step 2 above.
 Now you have in memory the image of our new operating system.

 4. For most versions of SYSGEN, all you have to do now is rerun the
 loaded memory image by issuing the command 'GO'. As before, you will
 be asked for the source disk. Don't answer the question this time;
 just enter a carriage return. Then you will be asked for the
 destination drive. Answer W, and follow that with carriage returns
 until you exit from SYSGEN. The new system is now running.

4.6.2.4. The More Complicated SYSGEN Technique

Some SYSGEN programs, such as the ones for the Ampro and SB180 computers, are
too fancy. They refuse to allow you to rerun them with the system image
already loaded in memory. They will use only an image that is stored in a
disk file. So, we carry out the first three steps described above, but we
then proceed slightly differently at step 4.

 4. Now that you have the system image in memory, you have to save it in a
 disk file. Enter the following command

 SAVE nn ZCPR33.SYS

 where 'nn' is the size of the system image in pages (units of 256
 decimal or 100 hexadecimal bytes). Now you are probably wondering
 what that value is! Here are several ways to deal with that question.

 4a. This might be your lucky day, and SYSGEN may have reported on exit
 the number of pages you should save. All SYSGEN programs should do
 this, but we don't recall ever having seen one that does.

 4b. You can sidestep the question entirely and just enter a number that
 you are sure is too big. That will waste some disk space temporarily,
 but it will work just fine. A number like 48H or 72 (decimal, 18K
 bytes) certainly should be enough.

 4c. You could try reading the documentation that came with your computer
 (a novel idea, we are sure). Again, the information should be there,
 but, again, it probably is not.

 4d. You can try to get the information by running MOVCPM, the other
 system generation program that generally comes with computer systems.
 We have more often seen MOVCPM programs that report the number of
 pages to save. Of course, if you want to use this technique, it will
 wipe out the image you have constructed in memory, and you will have
 to start over again from the beginning.

 4e. Finally, if you are really fastidious and want to know the exact
 number, you can do the following. Before performing steps 1, 2, and 3
 described previously, first run a debugger, such as DDT, ZDM, or DSD,

 -51-

ZCPR 3.3 User's Guide

 to initialize a large block of memory to zero. First use the 'F'
 (fill) command:

 F100,6000,0 ; Zero memory from 100H to 6000H

 Then exit from the debugger and follow the three installation steps
 described previously. Now use the 'P' (peek) command again to find
 where the system image in memory ends. Specifically, scan to find the
 page at which memory that still contains zeros begins. Subtract one
 from that value and you have the number required for step 4 above.
 For example, if the system image ended (the zeros began) at address
 2980H, the first full page of initialized memory would be 3000H, and the
 number of pages to save would be 29H (or 41 if you prefer to enter a
 decimal number, though SAVE will take 29H). Don't forget that you are
 working with hexadecimal numbers, so if the address had been 3000H,
 the number of pages would be 2FH (30H-1=2FH).

 5. Now that you have saved the new system image to a file called
 ZCPR33.SYS, you can run SYSGEN again to install it onto the disk.
 Enter the command

 SYSGEN ZCPR33.SYS

 You will be prompted for a destination drive. Enter 'A' and some
 carriage returns. Your new system is now running.

 -52-

ZCPR 3.3 User's Guide

Bibliography

Title Author Publisher

ZCPR3: The Manual Richard Conn New York Zoetrope
ZCPR3: The Libraries Richard Conn Echelon
ZCPR3 and IOPs Richard Conn Echelon
Z-System User's Guide Bruce Morgen Echelon
 Richard Jacobson
ZRDOS Programmer's Guide Dennis Wright Echelon
Z-NEWS (newsletter) Echelon
The Programmer's CP/M
 Handbook Andy Johnson-Laird Osborne/McGraw/Hill
Programing the Z80 Rodney Zaks Sybex

 -53-

ZCPR 3.3 User's Guide

This Page Left Blank

 -54-

ZCPR 3.3 User’s Guide

 I N D E X

$
$$$.SUB, 25, 26

A
A Possible Rare Problem with JUMP, SAVE, and the ECP, 40
ADUENV (Allow-DU from ENV), 35
ALIAS, 4
ALIAS.CMD, 16, 34
Aliases, 3
ALTCOLON, 23
AMPRO, 21. 51
AND, 34
ARUNZ, 17, 21, 29, 32, 34
ARUNZ Extended Command Processor, 16
Assembling the Command Processor, 44
Assembling Z33 with Other Assemblers, 46
Assembling Z33 with ZAS, 45
Automatic Installation of Transient Programs, 13
Automatic searching for program files, 2

B
BADDUECP, 34
Bate, Michael, 10
BDOS, 43
BELLFL, 41
Benefits of Z33 over Z30, 5
Benefits over CP/M, 4
Bibliography, 53
BIOS, 8, 21, 22, 34, 43
Bug Fixes
 Command Line Tail larger than 128 bytes. 3
 Default DMA Buffer, 3
 GET address parameter, 39
 looping when error handler not found, 9
 minimum path search, 10
 Overwriting System Extensions, 3
 SAVE command, 10
 SAVE "S" parameter, 41
 simultaneous use of ECP and error handler, 9
 SUBMIT Command Lines too long for Multiple Command Line, 3
Byram, Jim, 7

C
CCP Group, 7
CD, 20
Choosing the Options, 44
CHDRUN.COM, 14, 15
Collecting the Files, 43
colon prefix, 23
Command Acquisition Hierarchy, 24
Command processor, 1

 -55-

ZCPR 3.3 User's Guide

C and Processor Response to the Environment Descriptor, 35
Command Resolution Hierarchy, 27
COMMAND-PROCESSOR-RESIDENT COMMANDS, 37
COMMAND.LBR, 15, 29
Compatibility, 1
Conn, Richard, 1, 7, 8, 11

D
DDT, 13, 51
DEBUG.RCP, 19
Definitions, 11
DIR, 19, 20, 38
DIR form, 29
Direct invocation of Extended Command Processor, 23
Directory Prefixes, 23
Directory References and System Security, 29
DSD, 13, 51
DT42, 21
DU form, 29
DU References to Directories with Names, 31
DU3, 48
DUENV (DU from ENV), 35
DUOK, 35
DUOK flag, 32
Dynamic Sizing of FCP/RCP/NDR, 36

E
Echelon, 9, 43
ECHO, 20
ELSE, 24
Enhanced Command Search Control, 20
Enhanced Error Handling Under ZCPR33, 17
Enhancements
 automatic installation of utilities, 6
 automatic installation of ZCPR3 programs, 13
 Command Processor reads Environment Descriptor, 6, 35
 comments in source code, 6
 determination of CP features by programs, 4
 direct invocation of ECP, 23
 direct invocation of extended command processor, 6
 directory specification explicit or default indication, 3
 directory specification valid/invalid indication, 3
 DU references to named directories, 31
 enhancement of built-in commands, 6
 Error Handling, 17
 External FCB contains DU: program was located in, 3
 false IFs suspend password checking, 33
 faster ZEX processing from shells, 6
 handling of wheel-protected commands, 10
 intercepting illegal directory references, 34
 minimum path search, 6
 path search, 20
 reading RCP/FCP/NDR addresses, 9
 relocation of current DU:, 4
 relocation of submit-running flag, 4

 -56-

ZCPR 3.3 User's Guide

 REN checks for old file before erasing existing new file, 41
 SAVE sector parameter, 6
 searching of current directory, 21
 secure system DU: acceptance, 6
 simultaneous use of ECP's and Error Handlers, 5
 speed of processing increased, 6
 Type 3 programs, 5
 unconditional acceptance of current directory, 32
 use of user areas higher than 15, 4
 wheel bypassing of named directory password checking, 10
 wheel override of directory password checking, 6
 vheel-protected commands, 6
 xsub-running flag, 4
 ZEX running under shells, 10
ENV, 31
Environment descriptor, 31, 35
Equates Controlling Command Processor ENV Access, 35
ERA, 20, 38
ERASE, 20, 38
Error handler, 1, 14, 28
Error handling, 2, 5, 8, 17
Error types detected by ZCPR 3.3, 18
Error-handler flag, 2
Explicit directory, 2
Extended command processing, 2
Extended command processor, 5, 6, 14, 21, 27, 28
Extended Command Processor Recommendations, 17
External file control block, 35
External stack, 35

F
FCP, 18, 24, 27, 36
FCP10. 20
FI, 24
FINDERR, 20
Flexibility, 2
Flow command package (FCP), 27
Flow control, 8
Flow control package, 35
Flow State and Shell Stack-Generated Commands, 28
Forcing a Search of the Current Directory, 23
Fowler, Ron, 7
FULLGET, 39

G
GET, 13, 37, 38, 51
GET and Memory Protection, 39
GO, 7. 13, 19, 37. 39, 51
Goldstein, Howard. 10, 11
GOTO, 20

 -57-

ZCPR 3.3 User's Guide

H
Hawley, Al, 10
HELP, 8

I
IF, 24, 33
IF.COM, 20
Improvements to SUBMIT Processing. 26
INCLENV (INCLude in prompt from ENV), 35
Information Hooks, 3
INSTALLATION, 43
Installation in Z-Com and Z3-Dot-Com Systems, 47
Installation into a Manual Install System, 47
Installation Methodology, 43
Installation Using a SYSGEN Image, 50
Installation Using Disk Utility (DU3), 48
Installing the Command Processor into the System, 46
Intel MDS-800, 8
INTRODUCTION, 1
IOP, 43

J
JUMP, 13, 37, 40

K
Kaypro, 50
Kildall, Gary, 8
Kitahata, Steve, 10

L
LDR, 22, 36
LIST, 37, 42
LOADNDR, 30
LX, 15, 17
LX Extended Command Processor, 15

M
Mathias, Bob, 7
MCOPY, 38
MENU, 6, 8, 25
Message buffer, 2, 8, 35
MEX, 20
MEX2Z, 20
Minimum path, 6
MINPATH, 23
MKDIR, 8
HLOAD, 47
Morgen, Bruce, 10, 40
MOVCPM, 51
Multiple command line buffer, 25, 35

 -58-

ZCPR 3.3 User's Guide

N
Named directories, 29
Named Directory Passwords, 30
Named directory register, 35
NDR, 29, 36
Nielsen, Dreas, 11
No Password Checking Under False If Conditions, 33
NOTE, 37
NZCPR, 7

O
Open system, 2
OR, 33
Overview, 37

P
Passing Illegal Directory References to an ECP, 34
PATH, 4, 6, 8, 20, 22, 35
Petersen, Keith, 7
POKE&GO, 40
Precautions if using SCANCUR False, 21
PWD, 8
PWNOECHO, 34

Q
QUIET flag, 27
R
RCP, 18, 36
Recognizing Z30/Z33 in hex dumps, 48
REG, 20
REL, 45
Reliability, 3
Remote access systems, 2
REN, 20, 37, 41
RENAME, 20, 38
Resident command package, 35
Resident command package (RCP), 27
Resident commands, 1. 27
Root directory, 22
Root of Path and Minimum Path, 22
ROOTONLY, 28

S
Sage, Jay, 9, 10, 11
SAVE, 20, 37, 41, 51
SB180, 21, 51
SCANCUR, 21, 39
Search of Current Directory (SCANCUR), 21
SECTCH, 41
Secure system, 2
Security, 5
SHELL, 4
Shell stack, 25, 35
SHELLIF, 29

 -59-

ZCPR 3.3 User’s Guide

Shells, 3
SHOW, 43
SHOW.COM, 2
SIG/M, 7
Simultaneous Use of Error Handlers and ECPs, 14
SKIPPATH, 23
SLASHFL, 38
Special Options for Directory References, 34
START.COM, 22
STARTUP, 21
Strom, Charlie, 7, 8
SUB.COM, 2, 26
SUB33.COM, 2
SUBMIT, 3
Submit control flags, 26
Submit file, 25
SUBNOISE, 27
Summary of Benefits, 4
Summary of Path Search Rules. 24
SYS.ENV, 22
SYSGEN, 50, 51
System Command Resources, 27

T
TERM III, 9
The History of ZCPR, 7
The More Complicated SYSGEN Technique, 51
The Simpler SYSGEN Technique, 50
The Type-3 Environment, 19
TPA, 19
Transient commands, 27
TurboGen, 50
TurboROM, 50
TYPE, 37, 42
Type 1 Environment, 19
Type 2 Environment, 19
Type 3 Environment, 19
TYPE/LIST, 42
Types of Existing Installations, 43

U
Unconditional Acceptance of Current Directory, 32
User areas above 15, 4

V
VFILER, 6, 25
Virtual resident programs, 19
VMENU, 6

W
Wancho, Frank, 7
Warren, Roger, 11
WDU, 34
WHEEL, 8, 20
Wheel byte, 35

 -60-

ZCPR 3.3 User's Guide

WHL, 2 0
WHLDIR, 38
WASS, 34
WPREFIX, 34

X
XECHO, 20
XSUB flag, 4

Z
Z-Com, 1, 9, 21, 43, 47
Z-Msg, 9
Z-Node, 2, 49
Z-System, 9
Z3-Dot-Com, 1, 43, 47
Z3.COM, 43, 47
Z30 Command Acquisition Hierarchy. 25
Z33 Command Acquistion Hierarchy, 25
Z33 Security Improvements Philosophy, 31
Z33FCP, 20
Z33HDR.LIB, 21, 23, 28, 29, 35, 38, 41, 43, 44
Z33MAC.LIB, 43
Z3BASE.LIB, 43
Z31NS, 13, 14
Z3LOC, 43
Z3X, 47
ZAS, 44
ZC.COM, 47
ZC.CP, 47
ZCPR1, 7
ZCPR2, 7, 8
ZCPR3, 8
ZCPR31, 9
ZCPR33, 11
ZCPR33 COMMAND PROCESSING FUNCTIONS, 13
ZCPR33 Design Goals, 1
ZCPR33.Z80, 43
ZCX, 47
ZDM, 51
ZEX, 3, 6. 8, 17, 25, 26, 29, 38, 41
ZEX script, 1
ZRDOS, 43
ZRIP, 14
ZSIG, 20

 -61-

